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SiaDFP: A Disk Failure Prediction Framework Based
on Siamese Neural Network in Large-Scale

Data Center
Xiaoyu Fang , Wenbai Guan , Jiawen Li , Chenhan Cao , and Bin Xia

Abstract—With the rapid development of cloud services, ser-
vice providers increasingly rely on a dependable storage system
equipped with large-capacity disks to ensure data availability. The
primary source of unreliability in such storage systems attributes to
disk failures. In recent years, some proactive methods base on ma-
chine learning models have emerged, aiming to predict impending
disk failures by leveraging the SMART attributes of disks. These
methods enable service providers to timely back up storage data.
While the methods prove more effective and efficient in disk failure
prediction, they still face challenges, such as inadequate mining of
abnormal information and imbalanced classification. In this paper,
we mainly analyzed the change of data distribution in hard disks.
From the data analysis, we observed that the distribution change in
the failed disk is obvious during the period before the disk damage,
while that in the healthy disk is insignificant during running time.
Motivated by the observation, we propose a novel framework
named SiaDFP, based on Siamese neural network, designed to pre-
dict impending disk failures by capturing the distribution changes
in failed disks. Additionally, we observed that the failed disks
exhibit some change points as an abnormal feature by analyzing the
disk data trend. To fully mining abnormal information inhere in
failed disks, we propose CP-MAP mechanism and 2D-Attention
mechanism. Furthermore, we present a subsampling approach
named Region Balanced Sampling to address the challenge of
imbalanced classification. Experiments on the real-world dataset
Backblaze and Baidu demonstrate that the performance of SiaDFP
is outstanding in the task of disk failure prediction.

Index Terms—Attention mechanism, change point detection,
disk failure prediction, siamese neural network.

I. INTRODUCTION

THE proliferation of cloud service technology has led nu-
merous organizations to favor the deployment of projects

on cloud platforms. These endeavors necessitate substantial hard
disks for data center of cloud platforms [1]. The dependability
of the data center is of paramount importance, as it significantly
influences the choice of cloud service providers by users [2].
However, a substantial proportion, ranging from 76% to 95%,
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of disk replacements in large-scale data centers can be attributed
to hard disk failures [3]. Such failures not only result in service
downtime but also huge data loss, potentially incurring financial
losses for both users and service providers [4], [5].

The classification of disk failures including two primary cat-
egories: unpredictable and predictable. Unpredictable failures
are chiefly attributed to physical damage and external influ-
ences [6], which tend to appear suddenly and cannot be pre-
monitored early, posing an impossible challenge to predict. The
failure could be prevented by the reactive methods (e.g., Erasure
coding [7], [8] and Redundant Array of Independent Disks
(RAID) [9]). In contrast, predictable failures are not impulsive
behaviors but gradual ones, primarily caused by component
wear. The characteristics of the failures could be monitored
by the Self-Monitoring Analysis and Reporting Technology
(SMART), which makes predicting the failure possible. For the
failure, combined proactive methods with the reactive methods
could effectively ensure the data security. In this paper, we
mainly focus on addressing the predictable failure in disks with
proactive method.

To augment the reliability of data centers, researchers have
introduced many proactive methods for predictable disk failures.
The proactive methods are designed to predict impending disk
failures, affording service providers the opportunity to safeguard
their data in advance. The methods mainly relies on the analysis
of disk attributes, as recorded by the SMART, including metrics
such as power-on time and seek error rate. SMART is capable
of discerning abnormal disks by comparing attribute values
to predefined thresholds [10]. Nevertheless, the approach is
straightforward [11], resulting in the failure detection rate (FDR)
of merely 3%–10%, coupled with a meager false alarm rate
(FAR) of 0.1% [12]. Several traditional machine learning-based
models have been proposed to predict disk failures by using
SMART attributes as features. These models include regression
trees [13], random forests [14], and Bayesian networks [15].
However, the models fall short of capturing the temporal char-
acteristics of SMART attributes, which contain crucial infor-
mation for identifying the failed disks. Some deep learning
models, such as Recurrent Neural Networks (RNNs) [16] and
Long Short-Term Memory (LSTM) networks [17], [18], have
demonstrated the ability to address the limitations of traditional
machine learning-based models. However, the deep learning
models lack an explanation for the reason behind the disk
failure. To overcome the limitation of explanation of disk failure,
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attention mechanism [19], [20] has been introduced for disk
failure prediction. The mechanism excels at capturing significant
abnormal features within disk data, providing administrators
with a convincing understanding of the root causes of failures.
However, the attention mechanism can only identify the im-
portance of features based on single-dimensional information,
typically the time dimension. The feature of disks extracted
by the mechanism is redundant and inaccurate. Furthermore,
the existing methods fail to harness the valuable information
residing in change points within SMART attributes, which is
a pivotal feature for distinguishing between failed and healthy
disks [19], [21].

In this study, we discover that the distribution of SMART
attributes greatly changes during the period before the disk
becomes damaged, while the distribution change is not ob-
vious in the running period of the healthy disk. Motivated
by the observation, we explore a novel framework SiaDFP,
which could effectively capture the distribution change based
on Siamese neural network. Meanwhile, to address the above
limitations in existing methods, we propose CP-MAP mecha-
nism and 2D-Attention mechanism to capture abnormal features.
In real-world dataset, the number of healthy disks and failed
disks is severly imbalanced, which results in the model being
biased in predicting the disk failure. To address the issue, we
proposed the Region Balanced Sampling (RBS) to select the
representative disks. Extensive experiments are conducted to
validate the effectiveness of SiaDFP on the real-world dataset
Backblaze and Baidu. The contributions of this work are as
follows:
� We proposed a novel deep framework SiaDFP based on

Siamese neural network, which proved to be highly effec-
tive in capturing distribution changes as abnormal infor-
mation for disk failure.

� We proposed CP-MAP mechanism and 2D-Attention
mechanism to mine abnormal features of failed disks. The
CP-MAP is to capture the feature of change points that
appeared in SMART attributes, while the 2D-Attention
mechanism evaluates the significance of abnormal features
by considering information from two distinct dimensions.

� We proposed the Region Balanced Sampling to address
the imbalance classification in disk failure prediction. The
Region Balanced Sampling could select the representative
disks as the dataset for training deep learning models.

II. RELATED WORK

A. Disk Failure Prediction

In the field of disk failure prediction, the related research can
be divided into (1) Imbalanced classification, (2) Granularity of
prediction, (3) Data-driven task, (4) Fail-Slow detection, and (5)
Explanation of disk failure. Real-world scenarios often present
a substantial disparity between the number of failed disks and
healthy ones, which poses challenges to the effectiveness of disk
failure prediction methods. To solve this problem, Liu et al. [22]
proposed a semi-supervised prediction method for disk failure
based on a model that combines variational autoencoder and
long short-term memory network. The model can predict disk

failure by capturing the pattern of healthy disks. Xu et al. [23]
proposed a data augment method to minimize the limitation of
the number of failed disks. This method generates failed disk
data for training by shifting the data on the time axis forward or
backward with a certain time step. In addition, the granularity of
disk failure prediction has been a subject of investigation. Züfle
et al. [24] explored the prediction of disk failure within various
specific future periods. Their approach involves classification
to predict the impending failure period of disks and regression
to determine the exact day when a disk is likely to fail. Liu
et al. [16] considered the disk failure prediction as the disk
status prediction, where the disk status is split into several
healthy levels based on expert knowledge. The administrators
are capable of estimating the disk failure based on the specific
healthy level of disks. The traditional disk failure predictions
are totally conducted based on the SMART data, which consti-
tutes only a fraction of the comprehensive information avail-
able in data centers. To this end, Lu et al. [18] constructed
a data-driven method that supplied the SMART data with the
system-performance information to improve the performance of
disk failure prediction. Furthermore, Luo et al. [20] considered
the information from adjacent disks as additional features in
their model, exploring the interplay among disks for improving
predictive accuracy. For the fail-slow problem in disk failure,
Lu et al. [25] implemented a light regression-based model to
fast pinpoint and analyze fail-slow failures at the granularity
of drives. The explanation of disk failure is also a significant
task that provides convincing advice for administrators to decide
whether the disk should be replaced. Yu et al. [19] implemented
the attention mechanism to identify abnormal features leading to
disk failure based on the information of time dimension, aiding
administrators in conducting comprehensive failure analyses.
However, the above methods still encounter some challenges:
(1) The substantial number of healthy disks far exceeds that
of failed disks in real-world scenarios. However, the existing
methods could not effectively select representative healthy disks
to assist models in fully understanding the characteristics of
healthy disks. (2) Some abnormal information (e.g., change
points, distribution offset) exhibited in the SMART attributes
before disk failed. However, the existing methods could not
effectively utilize the abnormal information to help models
adequately learning the characteristics of failed disks. (3) The
importance of various SMART attributes varies for disk failure
prediction. However, the existing methods could not effectively
distinguish the importance of the attributes. The challenges
result in the unsatisfactory performance of the existing methods
in disk failure prediction.

B. Siamese Neural Networks

Siamese neural network, comprising two parallel networks
sharing structures and parameters, serves the purpose of calculat-
ing the similarity between two objects [26]. This model is widely
used in face verification, natural language processing (e.g.,
semantic similarity), and object tracking. In face verification,
Yann et al. [27] proposed a siamese convolutional neural network
to identify faces. The model outputs higher similarity between
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the faces from the same person while outputs lower similarity
between the faces from different people, based on the proposed
discriminative loss function. For the practical scenario, Khalil-
Hani et al. [28] proposed a light-weight siamese convolutional
neural network for the face verification task, which converges
faster and has better generalization. Semantic similarity assess-
ment is a popular task in natural language processing, involving
comparisons between documents, sentences, or words. Mueller
et al. [29] proposed a siamese-structure model based on LSTM
to calculate the similarity between sentences within different
lengths. Bolucu et al. [30] introduces a novel framework that
combines an attention network and a Siamese neural network
for the task of textual similarity. The attention network is em-
ployed to capture the semantic representation of a sentence. The
Siamese neural network is applied to perform semantic textual
similarity tasks using these semantic representations. Different
from the aforementioned tasks, object tracking aims to locate the
same object across consecutive frames. In other words, Siamese
neural network is used to find out the most similar region (i.e.,
the tracked object) in subsequent frames. Bertinetto et al. [31]
proposed a fully convolutional neural network based on the
siamese architecture, which locates the position of the tracked
object in the partial regions of the subsequent frame. However,
the performance of the proposed model is sensitive to the size
of the tracked object in different frames. To address this issue,
Li et al. [32] combined the original classification branch with a
bounding box regression branch (i.e., a region proposal network)
to improve the robustness of the model for the diverse size of
objects.

III. DATA INVESTIGATION & ANALYSIS

Analyzing the data from hard disks contributes to identifying
the difference between the healthy disk and the failed disk, and
gaining deep insights into the characteristics of disk failure.
In this section, we will explore the characteristics of the hard
disk based on two real-world datasets sampled from Backblaze
and Baidu. 87 SMART attributes are collected per day over
consecutive 6 years in Backblaze dataset, while 12 SMART
attributes are collected at much finer-granularity (i.e., per hour)
over consecutive 20 days in Baidu dataset. In this study, our
main focus will be on analyzing SMART trends and distribution
offset based on the two datasets.

A. SMART Trend

The SMART trend represents the direction of change in
SMART values over a specific period on a disk, which is a
crucial factor in distinguishing failed disks from healthy ones.
In this section, our primary focus is on tracking the trends of
SMART attributes over time to identify differences between
healthy and failed disks. After investigating SMART attributes
across all disks from the Backblaze dataset and the Baidu dataset,
we found that the trends of various SMART attributes behave
differently but stable in healthy disks, as shown in Figs. 1 and 2:
(1) the value of Reallocated Sectors Count remains constant;
(2)the value of Hardware ECC Recovered remains seasonal
change with fixed range; (3)the value of Current Pending Sector

Fig. 1. Trend of SMART attributes in healthy disk and failed disk from Baidu
dataset.

Fig. 2. Trend of SMART attributes in healthy disk and failed disk from
Backblaze dataset.

remains constant; (4)the value of Total LBAs Read remains
linear change. However, in failed disks, the trends of SMART
attributes suddenly change before the disks become damaged as
shown in Figs. 1 and 2. The sudden changes in trend are primarily
caused by firmware wear, physical damage, or software issues,
and are clear abnormal behaviors for distinguishing failed disks
from healthy ones.
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Furthermore, the change points displayed in Figs. 1 and 2
serve as indicators of change in the trends of SMART at-
tributes. To investigate the characteristics of trend changes
among various SMART attributes in pre-damage states of
failed disks, we utilized the Bayesian Change Point Detec-
tion [33] method to capture change points in SMART attributes.
Figs. 3(a), (b), and 4 illustrate the time intervals at which
change points appeared in SMART attributes before disk failed
among Seagate ST4000DM000 and ST8000DM002 disks from
the Backblaze dataset and that among Seagate ST31000524NS
disks from Baidu dataset. The time appearing change points
in SMART attributes varies across different disk models as
shown in Figs. 3(a), (b), and 4. Meanwhile, within a single
model of disk (e.g., Seagate ST4000DM000), the time appearing
change points in various SMART attributes exhibit dissimilar-
ity, implying the abnormal behaviors (i.e., trend changes) in
various SMART attributes occur at distinct time before disk
failed. For instance in Seagate ST4000DM000 from Back-
blaze dataset, the attribute SMART_197_RAW typically ap-
pears change points around 10 days before disk failed. Con-
versely, attributes SMART_7_NORM and SMART_193_RAW
appear change points around 40 days before disk failed. In
addition, it is noteworthy that attributes SMART_9_NORM
and SMART_7_RAW tend to display significantly more
change points compared to attributes SMART_188_RAW and
SMART_5_NORM among all Seagate ST4000DM000 disks.
This observation suggests that abnormal behaviors (trend
changes) are frequently observed in certain SMART attributes
(e.g., SMART_9_NORM and SMART_7_RAW), which should
be focused. Furthermore, merely 90 percent of disks within the
Baidu dataset exhibit change points (predominantly observed
in SMART_194_NORM) as shown in Fig. 4. Few disks from
Baidu dataset do not appear any change point before the disk
failed [18]. However, the data of SMART attributes from Baidu
dataset are collected during 20 days before disk failed, missing
the data over 20 days. Therefore, conclusions about trend change
drawn from analyzing the Baidu dataset are constrained. In the
next section, we primarily focus our analysis on the disks from
Backblaze dataset.

B. Distribution Offset

Distribution offset refers to the change of data distribution in
SMART attributes during a consecutive period. In this section,
we mainly investigate the difference of distribution offset in
healthy disks and failed disks. First, to denote the difference
between the distribution in healthy disks and that in failed disks,
we implement time windows with the length of 30 days sampling
from healthy disk and failed disk. For healthy disks, distribution
is sampled randomly within the lifespan of the disks, whereas for
failed disks, distribution is sampled from the period leading up to
failure. Fig. 5 illustrates the data distribution of various SMART
attributes in healthy and failed disks from ST4000DM000. The
comparison of data distribution between healthy and failed
disks reveals distinct differences. Fig. 6 depicts the distribu-
tion offset of SMART_241_RAW in different statuses of failed
disks before disk failed. We can learn that the distribution in

Fig. 3. Time appeared change points before disk failed among all failed
disks of Seagate ST4000DM000 and ST8000DM002 in Backblaze dataset.
S*R in the y-axis represents the attribute of SMART_*_RAW, and S*N in the
y-axis represents the attribute of the SMART_*_NORM (e.g., S4R denotes
the SMART_4_RAW attribute and S190 N denotes the SMART_190_NORM
attribute). The colorbar denotes the ratio of the number of disks captured change
points to the total number of disks.
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Fig. 4. Time appeared change points before disk failed among all failed disk
of Seagate ST31000524NS in Baidu dataset.

Fig. 5. Distribution offset in various SMART attributes.

healthy status (i.e., residual life >30) is similar as shown in
Fig. 6(a). Meanwhile, the euclidean distance of the distribution
in healthy status (i.e., residual life >30) is small as shown in
Fig. 6(b). However, the distribution is greatly changed when the
disk gets abnormal (i.e., residual life <30) before disk failed,
and the difference of the distribution between abnormal status
and healthy status is huge. As mentioned in III-A, the trends
of SMART attributes remain stable in healthy disks, while in

Fig. 6. Distribution offset in SMART_241_RAW.

Fig. 7. Distribution offset before the disk W300KW25 failed within the length
of 60 days time window.

failed disks, they suddenly change due to abnormal behaviors.
Consequently, distribution offsets tend to be small in healthy
disks while larger in failed disks. To capture the distribution
offset in various SMART attributes of a disk, we implement
fixed-length time windows to sample SMART attributes during
consecutive periods (i.e., 60 days). In addition, we utilize the
euclidean distance between the distribution of SMART attributes
in the first half of the time window and that in the second half
of the time window (1) to quantify the distribution offset.

E-D(Si) = (Sh+
i − Sh−

i )2. (1)

Si represents a time series vector of ith attribute. h− and h+
denote the first half time and the second half time, respectively.
Sh−

i represents a sub-vector of Si in the first half of the time
and Sh+

i represents a sub-vector of Si in the second half time.
Fig. 7 shows distribution offset of the disk W300KW25 from

ST4000DM000 in various periods before the disk failed within
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the length of 60 days time window. The distribution offset is
relatively small in the healthy status of the disk (i.e., residual
life >30 days), since the trend of SMART attributes are stable.
However, the distribution offset is very large when the disk being
abnormal status (i.e., residual life <30 days).

The phenomenon of distribution offset is widely observed
in various models of modern commercial disks (See Fig. A1 in
Appendix A, available online). We selected the specific attributes
for each disk model that could be observed the phenomenon
in the failed disks (See Table A1 in Appendix A, available
online). In fact, most of the selected attributes are implemented
to record abnormal events occurring during disk operations.
The occurrence of such abnormal events is unusual when a
disk is healthy, and the distribution of the SMART attributes
remains stable during the period, with a slight distribution off-
set. However, when the disk becomes abnormal, the abnormal
events occur more frequently. Meanwhile, the distribution of
related SMART attributes changes, which results in a significant
distribution offset. Table A1 shows that SMART_5_RAW (Re-
allocated Sectors Count), SMART_197_RAW (Current Pend-
ing Sector Count), and SMART_198_RAW (Off-Line Uncor-
rectable Sector Count) are selected in most disk models. These
attributes are related to the status of disk sector which is al-
ways becoming abnormal suffering from the frequent read/write
operations. For example, when the disk sectors are healthy,
the SMART_5_RAW value remains consistently stable, and
the distribution offset is small. However, when a disk sector
consistently experiences abnormalities (i.e., read/write errors),
the disk firmware program will redirect the address of the
sector to a pre-reserved healthy spare sector [10]. Meanwhile,
the distribution of SMART_5_RAW changes when the number
of reallocated sectors becomes large, indicating that the disk
becomes abnormal. Similarly, the significant distribution offset
of SMART_197_RAW and SMART_198_RAW also indicates
the potential fault of the corresponding disks.

The length of the time window could impact the quantified
value of distribution offset in various SMART attributes. To
explore the relationship between the two, we implement distinct
lengths of time window sampling healthy disks and failed disks
among various SMART attributes. Meanwhile, to denote the
difference between quantified value of distribution offset in
healthy disks and that in failed disks, the rate of quantified value
of distribution offset in failed disks compared to that in healthy
disks is used (i.e., a large rate means the difference is large).
The length of time window with the largest rate varies across
SMART attributes as shown in Fig. 8.

To explore an optimal and unified length of time window for
a disk with various SMART attributes (i.e., distribution offset in
failed disks and that in healthy disks are markedly different), we
implement (2) to quantify the distribution offset in a disk with
the selected SMART attributes :

D-Odisk =

n∑

i

E-D(Si), (2)

where D-Odisk represents the Distribution Offset and E-D
represents the euclidean Distance. Fig. 9 illustrates the rate of

Fig. 8. Rate of distribution offset in failed disks to that in healthy disks
among various SMART attributes with different length of time windows in
ST4000DM000.

Fig. 9. Rate of distribution offset in failed disk to healthy disk with various
length of time window in ST4000DM000.

distribution offset in failed disks compared to healthy disks for
ST4000DM00 disks among the SMART attributes with various
time window lengths. To effectively distinguish failed disks and
healthy disks, we selected the length with largest rate as an
optimal time window length. Notably, we observe that the time
window length of 60 days appears to be optimal for distinguish-
ing the distribution offset in failed disks from that in healthy
disks in ST4000DM000 as shown in Fig. 9. Additionally, we
explored the optimal window length for various disk models (See
Fig. B1 in Appendix B, available online). We found that the rate
within most time window lengths (i.e., 20–80 days) for various
disk models is >1, signifying a distinguishable distribution
offset between failed and healthy disks within the time window
lengths. However, the optimal length of time windows varies
among different disk models (e.g., 40 days for ST8000NM0055,
30 days for ST12000NM0008). The discrepancy arises from
the differing design and application principles employed by
manufacturers for various disk models, leading to variations in
the distribution of the same SMART attributes among different
disk models. Consequently, the optimal time window lengths
differ across various disk models.

Based on the data investigation and analysis regarding
SMART trends and distribution offset, several key insights
emerge:

1) The SMART trend undergoes changes before disk failure,
and the identification of change points becomes a crucial
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Fig. 10. Framework of the SiaDFP.

feature for predicting disk failure. It is essential to develop
a mechanism to capture these change points effectively.
Moreover, the time of trend change varies across different
SMART attributes, indicating that the significance of ab-
normal features may differ at different times. Additionally,
some SMART attributes exhibit frequent trend changes,
while others do not, suggesting varying importance of
SMART attributes in predicting disk failure. As a result,
a mechanism to distinguish the importance of these fea-
tures across different time and SMART attributes becomes
essential.

2) The distribution offset between healthy and failed disks
exhibits distinct differences. Creating a model that ef-
fectively captures this distribution offset can significantly
contribute to distinguishing failed disks from healthy ones.

IV. METHOD

This study aims to predict whether a disk will be damaged in
the next few days based on the disk data composed of multiple
SMART attributes recorded during a consecutive time. As re-
vealed by the analysis in Section III, a notable observation is that
the distribution offset in healthy disks tends to be small, while in
failed disks, it exhibits to be large. Motivated by the observation,
we propose a framework SiaDFP to capture the distribution
offset of the disk for predicting the impending failure. The disk
is predicted to fail in the next days if the offset exceeds the
pre-set threshold, and on the contrary, it is predicted to remain
healthy. Fig. 10 shows a comprehensive illustration of SiaDFP.
The framework mainly consists of a CP-MAP component and
two sub-networks. The CP-MAP component is to capture change
points within SMART attributes, which is a significant fea-
ture in failed disks. The sub-networks have parallel structures
sharing parameters, while each sub-network contains a 2D-
Attention component and a feature integration component. The

2D-Attention component is to capture the important abnormal
features within the SMART attributes. The feature integration
component is to synthesize the final feature representation of
the disk by combining the outputs of the CP-MAP component
and the 2D-Attention component. In addition, We implement
the notation D ∈ Rn×2m to denote the disk with n SMART
attributes recorded in consecutive 2m days. Dh− denotes the
disk data for the first half of the time period withinD, whileDh+

denotes the disk data for the second half of the time period within
D. In this section, we will introduce the framework SiaDFP in
detail.

A. CP-MAP Component

As noted in data investigation and analysis III, the presence
of change points within the SMART attributes of failed disks
is indicative of abnormal disk behavior. To capture the change
points in SMART attributes, we proposed the CP-MAP mech-
anism, which leverages the Bayesian Change Point Detection
Algorithm [34]. In detail, for each time series of SMART at-
tribute Di· = (Di·1,Di·2, . . .,Di·2m) in D, the algorithm is
employed to assess the probability of specific days when change
points, denoted asDi · τ∗, appear within the SMART attributes.
A probability exceeding 0.5 is regarded as an indication that a
change point appears on that day.

Afterward, a position mark-map M ∈ Rn×2m, where the di-
mension equals toD, is generated to mark the position of change
points inD. The mark-mapM is a discrete binary matrix, where
1 in M denotes that the corresponding position in D is a change
point, while 0 in M denotes that the corresponding position in
D is not a change point. Furthermore, the position mark-map
M ∈ Rn×2m is split into Mh− ∈ Rm×n and Mh+ ∈ Rm×n

as a part of the input to the sub-networks. The information
of change points within mark-maps Mh− and Mh+ could be

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on March 09,2025 at 02:06:28 UTC from IEEE Xplore.  Restrictions apply. 



FANG et al.: SIADFP: A DISK FAILURE PREDICTION FRAMEWORK BASED ON SIAMESE NEURAL NETWORK 2897

Fig. 11. Principle of 2D-Attention.

further embedded into final feature represents of disk via the
sub-networks.

B. 2D-Attention Component

As mentioned in III, the significance of features varies across
different time for a disk, as well as across different SMART
attributes of a disk. However, the attention mechanism employed
in [19] only focuses on capturing the importance of features at
different time (i.e., the feature in different days). To effectively
capture the significance of features across different time and
different SMART attributes, the 2D-Attention mechanism is
proposed. Fig. 11 illustrates the architecture of the 2D-Attention
mechanism. In the time domain, we implement the attention
mechanism [35] to distinguish the importance of SMART at-
tributes in different days:

qt = tanh(Dh ·W t
q + btq),

kt
j = tanh(W t

k ·Dh
·j + btk),

αj =
exp(qtT · kt

j)∑m
j exp(qtT · kt

j)
, (3)

where W t
q ∈ Rm×1, btq ∈ Rn×1, W t

k ∈ Rn×n, btq ∈ Rn×1 are
the model parameters and j ∈ (0,m].Dh, the SMART attributes
of a disk during the half of the time, is first transformed into a
high-level context vector qt, and Dh

·j is transformed into vector
representation kt

j in the time domain. Then, we calculate the
relation between kt

j and the context vector qt and obtain the
importance of kt

j based on a softmax function. The attention
mechanism generates a weight distribution α for days. Intu-
itively, αj denotes the importance of a day for the disk failure
prediction. In the SMART attributes domain, we implement the
other attention mechanism to distinguish the importance of each
SMART attribute for the disk failure prediction:

qs = tanh(W s
q ·Dh + bsq),

ks
i = tanh(Dh

i· ·W s
k + bsk),

βi =
exp(ks

i · qsT)∑n
i exp(k

s
i · qsT)

, (4)

Fig. 12. Structure of feature integration component.

where W s
q ∈ R1×n, bsq ∈ R1×m, W s

k ∈ Rm×m, bsq ∈ R1×m

are model parameters to learn and i ∈ (0, n]. qs is a context
vector of SMART data, and ks

i is a vector representation of each
SMART attribute in SMART attributes domain. We calculate
the relation of ks

i with qs, then obtain the weight of the ks
i

through a softmax function. The attention mechanism generates
a weight distributionβ for each SMART attribute, andβi denotes
the importance of a SMART attribute. Finally, we represent the
feature of the disk data with the feature map ADh which the
abnormal feature is enhanced through the (5):

ASMh = β ·α,

ADh = ASMh �Dh, (5)

whereASMh decided by the weight vectors in the time domain
and SMART attributes domain (e.g., α and β), and denotes the
distinct importance of a SMART attributes in a day.

C. Feature Integration Component

The occurrence of change points within the SMART attributes
can indicate the abnormal status of a disk. Additionally, the
temporal SMART data can reflect changes in SMART attributes
over time. Consequently, both change points and temporal in-
formation of SMART attributes are crucial features for disk
failure prediction. To embedding the feature of change points
while capturing the temporal features, we propose the feature
integration component, which is combined with the network of
CNN and LSTM. Fig. 12 illustrates the architecture of the com-
ponent. CNN is used to embedding the position information of
change points into feature map based on the position mark-map
generated by CP-MAP component while extracting important
feature of the SMART attributes for the next LSTM. In detail,
we first concatenate the position mark-map Mh with ADh into
a two-channel mapMADh ∈ R2×m×n. SinceMh could mark
the position of change points in ADh, the convolutional layer
of CNN is able to embedding the position information of change
points into feature map with the convolution calculation for the
two-channel map MADh. Subsequently, a max-pooling layer
is applied to select important feature and reduce computational
complexity for subsequent layers. In addition, LSTM is imple-
mented to capture changes in the SMART attributes by learning
temporal features. Finally, a fully connected layer generates an
integrated feature representation of the disk.
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Algorithm 1: Pseudocode of SiaDFP.

Input: A disk D ∈ Rn×2m

Initialization:
W t

q ∈ Rm×1, btq ∈ Rn×1, W t
k ∈ Rn×n, btq ∈ Rn×1,

W s
q ∈ R1×n, bsq ∈ R1×m, W s

k ∈ Rm×m, bsq ∈ R1×m,
pre-set threshold

Define:
CPD(x): Detect the change points position of x;
Ecuclidean(x1, x2): Caculate the distance between
x1 and x2;

Output: The status of the disk
1: function CP-MAP(D, h)
2: Pos = CPD(D) // Pos is the position of the change

points
3: Transfer Pos to mark-map // mark-map is a binary

matrix
4: Split mark-map into Mh− and Mh+ based on time
5: return Mh

6: end function
7: function 2D-Attention(Dh)
8: Caculate ADh by (3), (4), and (5)
9: return ADh

10: end function
11: split D into Dh− and Dh+ based on time
12: for each h ∈ (h−, h+) do
13: Mh = CP-MAP(D, h);
14: ADh = 2D-Attenion(Dh);
15: MADh = Concatenate ADh and Mh;
16: outputh = Integrate feature of MADh

17: end for
18: Distance = euclidean(outputh−, outputh+)
19: if Distance > pre-set threshold then
20: return Failure
21: else
22: return Healthy
23: end if

D. Model Training and Prediction

The prediction process of SiaDFP is shown in Algorithm 1.
We implement the contrastive loss function described in (6) to
magnify the distribution offset of failed disks while mitigating
that of healthy disks.

D-O = ||Sub-Network-II(Dh+)

− Sub-Network-I(Dh−)||,

Loss(Dh−,Dh+, Y ) =
1

2
(1− Y )D-O2

+
1

2
Y {max(margin−D-O, 0)}2 .

(6)

Y is the label of the disk, where 0 represents a failed disk
and 1 represents a healthy disk. margin is a constant to limit
the range of offset. In addition, The parameters of SiaDFP

TABLE I
OVERVIEW OF DATASET

are updated through the back-propagation algorithm during the
training process.

V. EXPERIMENTS

In this section, experiment evaluation are conducted on the
real-world dataset Backblaze and Baidu to verify the effective-
ness of the SiaDFP,1 and mainly discuss the following issues:

1) Performance of Disk Failure Prediction: How does the
performance of SiaDFP compare to the performance of
baselines?

2) Component Exploration: Whether the 2D-Attention and
CP-MAP are effective for the disk failure prediction?

3) Case Study: Why SiaDFP is effective for the disk failure
predicion. Why does SiaDFP not predict the failure of
minority samples?

A. Experimental Setting

1) Data Processing: The experimental evaluation is con-
ducted based on the Backblaze dataset and Baidu dataset,
including the disk models Seagate ST4000DM000, Seagate
ST8000DM002 and Seagate ST31000524NS.2 Table I shows
the overview of the datasets. As observed from Table I, the
number of healthy disks (denoted as ‘#H’) is greater than that
of the failed disks (denoted as ‘#F’), which causes the severe
data imbalance. To address this issue, we employ an upsampling
method TPS [20] to augment the number of failed samples from
the failed disks, using a sliding time window within the fixed
size. The leading time in TPS is a period between the occurrence
time of prediction action and the occurrence time of the disk
failure. The failed samples are generated as the time window
sliding across the leading time of failed disks. Additionally, we
obtain the healthy samples by the time window sliding across
the lifetime of the healthy disks.

To collect the representative healthy samples for further bal-
ancing the number of healthy samples and failed samples, a
subsampling method called Region Balanced Sampling (RBS)
is proposed. Fig. 13 illustrates the design of RBS. Initially,
we employ the K-Means clustering algorithm to partition the
healthy samples into five clusters. To select the representative
samples, each cluster is further divided into five regions using
the contour line. The contour lines are generated by the distance
l, where l represents one-fifth of the distance from the centroid
to the furthest point as shown in Fig. 13. From each region,
25% of the samples are selected to construct the set of healthy

1https://github.com/coderxor/SiaDFP.git
2Comparative experiments involving additional disk models can be found in

Appendix B, available online
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Fig. 13. Processing of the RBS.

samples. After the process of upsampling and subsampling,
Dataset-1 contains 6128 failed samples (denoted as ‘#P’) and
7258 healthy samples (denoted as ‘#N’). Dataset-2 contains 504
failed samples and 794 healthy samples. Dataset-3 contains 4337
failed samples and 5826 healthy samples. The label of #P is 0,
and that of #N is 1. In addition, we randomly selected 80% of the
failed samples and healthy samples as the training samples and
the remaining samples as the testing samples.3 Moreover, not
all SMART attributes contribute significantly to model training
for disk failure prediction. For Dataset-1 and Dataset-2, we
employed a selection criterion based on the presence of dis-
tribution offset in SMART attributes leading up to disk failure.
For Dataset-3, which comprises only 12 SMART attributes, all
attributes were included in model training due to the limited
number available. This strategic selection process ensures that
the model focuses on the most relevant attributes, optimizing its
predictive capabilities. Furthermore, since the range of values
in different SMART attributes varies widely, we normalize the

3The link to the training samples and test samples used in this paper

value of SMART attributes to avoid bias according to (7):

x =
x− xmin

xmax − xmin
, (7)

where x is the original value of a SMART attribute. xmax is
the maximum value of the SMART attribute among the training
samples, andxmin is the minimum value of the SMART attribute
among training samples.

2) Baseline: We compared the proposed model with several
state-of-the-art baselines in disk failure prediction to evaluate
the effectiveness of the SiaDFP. These baselines can be divided
into two categories: SVM [36], DT [13], RF [14], GBDT [37],
RGF [21] are based on traditional machine learning-based
methods, and LSTM [17], CNN+LSTM [18], AMANDA [19],
NTAM [20] are based on deep learning methods.

B. Performance of Disk Failure Prediction

Table II shows the performance of baselines and SiaDFP
on Dataset-1, Dataset-2 and Dataset-3. As observed from
Table II that the performance of GBDT exceeds other traditional
machine learning based models on Dataset-1, while the RF
performs well on Dataset-2. In addition, deep learning mod-
els (i.e., LSTM, CNN+LSTM, NTAM, AMANDA, SiaDFP)
significantly outperform those of traditional machine learning-
based models on Dataset-1. However, except for the SiaDFP, the
other deep learning models perform worse than those traditional
machine learning-based methods on Dataset-2. The better per-
formance of SiaDFP on Dataset-1 and Dataset-2 demonstrates
that the mechanism of extracting features from disk series
with 2D-Attention and CP-MAP in the model could leverage
the temporal information of disks and effectively capture the
characteristics of disk failure, even on a small-scale dataset.

To efficiently apply the models in real data center scenarios,
we explored the overhead of the models about model size and
inference time. The number of model parameters is implemented
to denote the model size, and the time taken to predict a sample is
implemented to denote the inference time. The exploration was
conducted on a server with 32 GB RAM and two 10 GB NVIDIA
GeForce GTX 1080 Ti GPUs. Table III shows the overhead of
the baselines and the proposed model in Dataset-1. In contrast
to traditional machine learning models, deep learning models
demonstrate superior performance but often come with larger
model sizes and longer inference times. Notably, SiaDFP excels
in performance across various datasets, despite its larger model
size and longer inference times compared to other models.

C. Component Exploration

1) CP-MAP vs 2D-Attention: Both CP-MAP and 2D-
Attention component are applied to mine the abnormal informa-
tion from disk data. CP-MAP utilizes expert knowledge-based
extraction methods, capturing change points using Bayesian
Change Point Detection Algorithm. Different from CP-MAP,
2D-Attention relies on learning-based extraction, utilizing well-
trained deep neural networks to capture abnormal information.
In this section, a series of experiments are conducted to explore
the effectiveness of CP-MAP and 2D-Attention.
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TABLE II
PERFORMANCE OF BASELINES AND SIADFP

TABLE III
OVERHEAD OF MODELS

Table II shows the performance of baselines and BaseSiaDFP
combined with CP-MAP and 2D-Attention. BaseSiaDFP is
the model which only contains the feature integration com-
ponent where the 2D-Attention component and the CP-MAP
component are removed. BaseSiaDFP+2D-Attention is the
model which combines the feature integration component with
the 2D-Attention component. BaseSiaDFP+CP-MAP is the
model which combines the feature integration component with
the CP-MAP component.

As observed from Table II, both of BaseSiaDFP+CP-MAP
and BaseSiaDFP+2D-Attention outperform BaseSiaDFP on
all three datasets. The phenomenon indicates that the abnormal
information captured by CP-MAP and 2D-Attention effectively
promotes the model to learn the characteristics of disk failure.
In addition, BaseSiaDFP+2D-Attention performs better than
the BaseSiaDFP+CP-MAP on all three datasets. As shown in
Fig. 14, there are some intersections of the important feature
captured by 2D-Attention and the change point captured by
CP-MAP, where 2D-Attention is capable of capturing more cru-
cial information (i.e., the position of deep yellow) which stably
improves the performance of models. Consequently, the effec-
tiveness of the learning-based extraction method, 2D-Attention,
surpasses that of the expert knowledge-based extraction method,
CP-MAP, when mining abnormal information for disk failure
prediction.

To further compare the effectiveness of CP-MAP and 2D-
Attention, we combine the baselines with the components to
obtain the integrated models. As CNN is essential for CP-MAP,
we conduct the comparative experiment based on CNN+LSTM.
Specifically, CNN+LSTM+CP-MAP is the model which com-
bined CNN+LSTM with CP-MAP, while CNN+LSTM+2D-
Attention is the model which combined the CNN+LSTM with
2D-Attention. As observed from Table II, the performance
of CNN+LSTM+2D-Attention exceeds the performance of
CNN+LSTM+CP-MAP. The phenomenon further illustrates
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Fig. 14. Score map generated through the 2D-Attention component of
BaseSiaDFP+2D-Attention trained by Dataset-1 (i.e., disk Z300GZ6V). The
position with deep yellow represents that the corresponding SMART attribute
in disk Z300GZ6V is essential. The red triangles in the score map mark the
positions of change points which are captured by the CP-MAP component in
BaseSiaDFP+CP-MAP on Dataset-1.

that 2D-Attention is superior to CP-MAP in promoting perfor-
mance of the model on disk failure prediction. Moreover, as
observed from Table II, SiaDFP, which consists of the CP-MAP
component and the 2D-Attention component, outperforms those
models that include only one of them. The phenomenon indi-
cates that the change point captured by CP-MAP complement
supplement the important features extracted by 2D-Attention for
mining the abnormal information from disk data. Therefore, the
combination of the CP-MAP mechanism and the 2D-Attention
mechanism could mine the more comprehensive abnormal in-
formation of disks and exhibit excellent performance in disk
failure prediction.

2) 2D-Attention vs 1D-Attention: To compare the effective-
ness of 2D-Attention and 1D-Attention (i.e., traditional atten-
tion mechanism [35]), we combine the baselines and BaseSi-
aDFP with the 2D-Attention and 1D-Attention components.
Table II shows the performance of these integrated models. For
LSTM and CNN+LSTM, the 2D-Attention and 1D-Attention
components are integrated to the original models. In addition,
1D-Attention is utilized in the original NTAM and AMANDA.
Therefore, for NTAM and AMANDA, we first remove 1D-
Attention from them to obtain the basic models (i.e., BaseNTAM
and BaseAMANDA) and then integrate 2D-Attention with the
basic models to obtain the combined models.

As observed from Table II, the models combined with 2D-
Attention outperform the corresponding models combined with
1D-Attention and the corresponding basic models. 1D-Attention
exclusively focuses on capturing the feature importance in
the time dimension. However, besides the time dimension,
2D-Attention could capture the feature importance for various
SMART attributes. As shown in Fig. 15, 2D-Attention assigns
different importance score to various SMART attributes on
a specific day, while 1D-Attention assigns equal importance
weight to all SMART attributes on that day. Compared to 1D-
Attention, the feature of each SMART attribution extracted by

Fig. 15. Score map generated by 1D-Attention and 2D-Attention in Dataset-1.

Fig. 16. Average importance score generated by 2D-Attention for SMART
attributes in Dataset-1.

2D-Attention are more refined and precise for enhancing the per-
formance of the model on disk failure prediction. Furthermore,
to identify the most crucial SMART attribute for predicting disk
failures, which can assist data center administrators in diagnos-
ing disk health, we count the average importance score gener-
ated by 2D-Attention for each SMART attributes. As shown in
Fig. 16, SMART_7_RAW (Seek Error Rate) emerges as the most
critical attribute concerning disk failure prediction. This finding
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Fig. 17. Distribution offset of healthy samples and failed samples.

provides valuable guidance for administrators when monitoring
disk health and making predictions regarding potential failures.

D. Case Study

In the comparative experiments and the component explo-
ration experiments, SiaDFP exhibit a standout performance for
the disk failure prediction when compared to other baselines.
In this section, we conduct series of analysis to explore the
reason for SiaDFP effectiveness and the limitation of SiaDFP.
As demonstrated in Fig. 9 within the Section III (i.e., Data In-
vestigation & Analysis), the distinction between the distribution
offset of healthy samples and failed samples is present but not
readily discernible (i.e., the rate of distribution offset in failed
samples compared to that in healthy samples is slightly greater
than 1). However, after the healthy samples and failed samples
being extracted feature by SiaDFP, the distribution offset of the
two samples exhibit obvious disparity as shown in Fig. 17. This
disparity allows for the clear differentiation of the two samples.
The result demonstrates that distribution offset is crucial abnor-
mal feature for the disk failure prediction, while SiaDFP could
effectively capture the abnormal feature based on the Siamese
neural network. Additionally, the component exploration exper-
iments in Section V-C underscores the effectiveness of both the
2D-Attention mechanism and the CP-MAP mechanism on the
other abnormal features for disk failure prediction.

However, it is worth noting that the performance of SiaDFP
falls short of achieving perfection across various metrics (such
as Accuracy, Recall, Precision, and F1) in the three datasets.
The best levels of SiaDFP in these metrics are attained at 99%
in Dataset-1 and Dataset-3, still with a 1% gap remaining from
achieving a perfect 100%. To understand the reasons behind
this limitation, we conducted an analysis of the data from the
disks in the datasets that hinder the performance of SiaDFP.
Fig. 18 illustrates the normalized value of SMART attributes
in the failed disks from Dataset-1 and Dataset-3 that SiaDFP
cannot correctly distinguish. We can learn that the value of
SMART attributes remain stable without any changes before the
disks failed. In other words, the disks experience abrupt failure
without exhibiting any discernible signs, rendering SiaDFP
unable to effectively capture any distribution offset from these
disks. Consequently, one limitation of SiaDFP is its inability

Fig. 18. Normalized value of SMART attributes.

to distinguish disks that experience sudden and unanticipated
failures.

VI. CONCLUSION

In this paper, we dive into the research of disk failure predic-
tion and propose a novel prediction framework SiaDFP based
on the Siamese neural network, which contains a CP-MAP
component and two parallel sub-networks. Each sub-network
consists of a 2D-Attention component and a feature integra-
tion component. We conduct the experiments on the real-world
dataset Backblaze and Baidu to evaluate SiaDFP. The experi-
mental results demonstrate that: (1)CP-MAP and 2D-Attention
are capable of mining the abnormal information from time series
of disks for the disk failure prediction; (2)Compared to the
traditional attention mechanism (i.e., 1D-Attention mechanism),
2D-Attention could capture more representative features based
on the information from two dimensions (i.e., the time domain
and the SMART attributes domain); (3) The performance of
SiaDFP which combined with CP-MAP and 2D-Attention could
exhibit the standout performance on disk failure prediction. (4)
The limitation of SiaDFP is that it can not distinguish the failed
disks experienced a sudden damage.
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