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Abstract
Ticket automation plays a crucial role in ensuring the normal operation of IT software systems. One of the key tasks of

ticket automation is to assign experts to resolve incoming tickets. However, when facing a large number of tickets,

inappropriate expert assignments can result in frequent ticket transfers between experts, leading to time delays and wasted

resources. Therefore, it is essential to find an appropriate expert efficiently and effectively with minimal steps. To address

this challenge, we propose a sequence-to-sequence-based translation model that is combined with a recurrent recom-

mendation network to recommend suitable experts for tickets. The sequence-to-sequence model transforms the ticket

description into the corresponding resolution for capturing the potential and useful features of representing tickets. The

recurrent recommendation network recommends the appropriate expert based on the assumption that the previous expert in

the recommendation sequence cannot solve the ticket. To evaluate the performance of our proposed model, we conducted

experiments on two real-world datasets and compared SSR-TA with several baselines. The experimental results demon-

strate that our proposed model outperforms the baselines.

Keywords Ticket automation � Seq2seq � Recurrent recommendation � Description translation

1 Introduction

In an IT software system, maintaining the normal operation

is the essential requirement to provide high-quality ser-

vices. In practice, the relationship among components of

the IT software system is complicated. Once an exception

occurs in a component, the exception may spread rapidly to

other components and generate many concurrent warnings,

causing the system to be unable to provide service. For

example, IBM cloud suffered two outages within five days

in 2021 [1]. The services were hit in the UK, the USA,

Sydney, Tokyo, and more for several hours due to incorrect

routing settings by the external network provider. How-

ever, manually assigning an expert to address the exception

is time-consuming and expensive. In order to catch

exceptions and solve problems in time, the ticket automa-

tion is widely used in IT software systems. Figure 1

illustrates the workflow of the ticket automation. In detail,

when an exception is detected by the engineer/monitor

system, a ticket containing the exception description and

the corresponding system information will be submitted to

the ticket system. Further, the ticket system assigns an

expert to solve the ticket according to the submitted

information (i.e., the description and the system informa-

tion). If the current expert cannot solve the ticket, another

expert will be assigned by the ticket system until the ticket

is solved. However, the inappropriate assignment (i.e., the

assigned expert cannot solve the ticket) will cause serious

problems such as time delays, wasted resources, and ser-

vice failures. It is crucial to assign an appropriate expert to

solve the ticket in time.
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Many efforts have been made by researchers to improve

the performance of ticket automation at different stages.

For the ticket generation, the previous works focused on

generating tickets automatically [2] and reducing ticket

submitting delays [3]. To represent ticket description, the

approaches based on the service catalog mapping [4] and

the entity name extraction [5] were introduced. Addition-

ally, several methods were proposed for the ticket classi-

fication, including the entity recognition for ticket

description [6], the similarity-based ticket clustering [7],

and the hierarchical multi-label classification [8]. Further-

more, researchers proposed two types of ticket recom-

mendation methods, including resolution and expert

recommendation. The resolution recommendation is the

methods based on the ticket description similarity [9] or the

hierarchical multi-armed bandit [10] recommend a corre-

sponding resolution for the ticket. The expert recommen-

dation is proposed to find an appropriate expert to solve the

ticket based on the ticket description and the ticket trans-

fers among experts [11]. Topic models such as LDA [12]

and deep semantic models like DSSM [13] are used for

feature representation of ticket descriptions. However, the

recommendation method based on similarity between

ticket and expert features relies on matching the similarity

between the current ticket and expert features, which may

result in recommending experts with similar abilities who

are unable to solve the ticket. Moreover, the method based

on historical ticket transfer relationships recommends

experts based on the transfer path of historical tickets,

which may result in invalid recommendations if the

previous experts in the transfer path were unable to solve

the ticket, leading to longer resolution time.

To overcome the aforementioned problems, we propose

a sequence-to-sequence (seq2seq)-based model SSR-TA

which is combined with a recurrent recommendation net-

work to recommend appropriate experts for the ticket

automation. For training SSR-TA, the description of solved

tickets is translated into the corresponding resolution,

where the potential features of ticket description and res-

olution are captured to improve the representation of the

ticket description. The expert recommendation will be

generated based on the effective representation of the ticket

description. Because the traditional Top-N recommenda-

tion generates expert sequences based on the similarity,

which may cause that if the current expert cannot solve the

ticket, other similar experts in the sequence cannot solve

the ticket either. By introducing an attention mechanism,

SSR-TA recurrently recommends the next appropriate

expert based on the assumption that the previous expert in

the recommended sequence failed to solve the ticket. The

main contributions of this paper are summarized as

follows:

1. To the best of our knowledge, SSR-TA is the first

seq2seq-based model that combined the features from

description and resolution to assist the expert recom-

mendation, and the model can be used for ticket

resolution generation.

2. We propose a recurrent recommendation network

adopting an attention mechanism to generate the expert

recommendation sequences, while the generation is

Fig. 1 The workflow of the

ticket automation
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based on the assumption that the previous expert in the

sequence failed to solve tickets, the results show that

the recurrent recommendation network improves the

ranking of the true resolver in the recommendation

sequence.

3. We conduct experiments to discuss the effectiveness of

description translation and the recurrent recommenda-

tion network, and compare the performance of several

baselines with SSR-TA.

The rest of the paper is organized as follows: Section 2

summarizes research related to ticket automation. Section 3

describes the details of SSR-TA. Section 4 conducts

experimental comparisons and results analysis. Finally,

Sect. 5 concludes the paper.

2 Related work

This section introduces the related research on the ticket

automation and the application of seq2seq technology. In

addition, the similarities and differences between these

approaches and ours are presented briefly.

2.1 Ticket automation

2.1.1 Ticket data analysis

For automatic management of cellular networks, Palacios

et al. [2] proposed a big data-empowered framework using

the anomaly detection and root cause analysis tools to

identify the network state and automatically generate

trouble tickets. To reduce the time of interaction during

resolving a ticket, Gupta et al. [3] analyzed the historical

ticket interactions between analysts and users, and pro-

posed a system to requesting additional information when

the user was raising a ticket based on the ticket description.

Moreover, Shimpi et al. [4] proposed an integrated

framework to extracting issues from tickets under different

scenarios, including system-generated and user-generated

tickets. Han et al. [5] studied the problem of extracting

software product names that are represented by various

surface forms and informal abbreviations. They designed

features to precisely map abbreviations to the product and

version by analyzing ticket language patterns. These

approaches improved the efficiency of ticket analysis by

extracting effective features of ticket descriptions. To fully

exploit the information in the ticket data, our approach

combines the description with the corresponding resolution

to capture the effective and potential representation of

tickets for ticket analysis.

2.1.2 Ticket classification

Potharaju et al. [6] proposed NetSieve which was a

framework to infer problem symptoms, troubleshooting

activities, and resolution actions based on analyzing the

steps performed on each network entity from tickets. Zeng

et al. [8] explored the hierarchical multi-label ticket clas-

sification problem and proposed GLabel, which was a

greedy algorithm to search the optimal hierarchical multi-

label for each ticket, where a novel contextual hierarchy

loss was applied to maintain the accordance of labels

assigned to each ticket. Zhou et al. [14] proposed an

unsupervised ticket classification, which used the classic

canonical analysis to extract ticket features for ticket

labeling. Xu et al. [7] constructed signatures to represent

each type of ticket and proposed an algorithm to identify-

ing the type of incoming tickets by comparing the simi-

larity between the representation of incoming tickets and

each type signature. To improve the effectiveness of

measuring similarities among tickets, they also proposed a

multi-view similarity measure framework that integrated

the traditional similarity measures (e.g., Jaccard similarity,

NLCS) [15]. Piero et al. [16] proposed two machine

learning and natural language processing techniques COTA

v1 and COTA v2 to converts the multi-classification task

into a ranking problem, and use encoder-combiner-decoder

get heterogeneous input and output feature types. The

method was validated the real-world impact of COTA in

reducing issue resolution time by 10 percent without

reducing customer satisfaction. Fuchs et al. [17] conducted

a literature review in the field of automated support ticket

systems, they found creating an automated incident man-

agement tool being the majority topic in the field and

identified Random Forrest and Support Vector Machine as

best performing algorithms for classification in the field.

Recently, Alessandro et al. [18] conducted in-depth

research on multi-level ticket classification and used a pre-

trained BERT language model to classify tickets by topic,

which improved the accuracy of ticket classification. These

methods exploited semantic or syntactic analysis of ticket

descriptions to improve the performance of ticket classifi-

cation. However, in this paper, we considers the ticket

automation as a Q&A problem by translating the descrip-

tion into the corresponding resolution. Our proposed

approach fully utilizes the sequential information to learn

the representation of tickets which is capable of improving

the performance of ticket classification.

2.1.3 Ticket recommendation

Ticket recommendation is mainly categorized as resolution

recommendation and expert recommendation. Resolution

recommendation is to provide appropriate historical ticket
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resolutions for the incoming ticket, while expert recom-

mendation is to assign potential experts to address the

incoming ticket. For resolution recommendation, Zhou

et al. [19] used the k-nearest neighbors algorithm to find

out the historical tickets which are similar to the incoming

ticket, and recommend the corresponding resolutions.

However, the same exception would sometimes generate

tickets with different descriptions due to the changes of

system environment, which may weaken the effectiveness

of the resolution recommendation. To solve this problem,

they utilized structural corresponding learning-based fea-

ture adaptation to maintain the coincidence of representa-

tions to these difference tickets [20]. Zhou et al. [9] also

used the siamese neural network to compare the similarity

between historical tickets and the incoming one, and rec-

ommended the resolution which belonged to the most

similar historical ticket. Wang et al. [10] cast resolution

recommendation as a reinforcement learning problem and

proposed an integrated framework based on hierarchical

multi-armed bandits with the arm dependencies considered

as a tree-structured hierarchy, while the framework rec-

ommends the resolution with the maximum reward at leaf

node. For expert recommendation, Xu et al. [21] proposed

a two-stage expert recommendation model that if the initial

expert cannot solve the ticket, the unsolved ticket will be

transferred to the next expert. Furthermore, Han et al. [22]

proposed a unified ticket routing framework that incorpo-

rated four types of features (i.e., ticket, group, ticket-group,

and group-group) for ranking the list of the expert rec-

ommendation. Recently, they also proposed a multi-view

model to further improve the performance of the expert

recommendation in their previous work, where the graph

convolutional network was used to generate expert graph-

view representation and the deep neural network was used

to obtain the text-view feature [11]. However, the tradi-

tional methods often ranked the expert and resolution

recommendation list based on the similarity (e.g., the

similarity between tickets, or the similarity between

experts and tickets). In other words, if the first recom-

mendation in the list fails, the second one will probably fail

due to the incorrect representations of tickets or experts. In

addition, these expert recommendation approaches relied

on the ticket transfers among experts which emphasized the

ability of experts while ignoring the root cause of tickets.

The ticket recommendation is similar to the Q&A task,

which retrieves or generates the appropriate answer to the

given question. Recently, Raheja et al. [23] proposed a

context-aware self-attention mechanism coupled with a

hierarchical recurrent neural network to classify Dialogue

Acts, effectively capturing utterance-level semantic text

representations while maintaining high accuracy. In addi-

tion, Deng et al. [24] proposed a unified model to exploit

the opinion information from the reviews to facilitate the

opinion-aware answer generation for a given product-re-

lated question, effectively generating opinionated and

informative answers. These approaches performed well for

the Q&A task mainly comprising contextual natural lan-

guage texts, however, they are ineffective for understand-

ing ticket descriptions that are context-free and without

polarity. To overcome these problems, SSR-TA is trained

only based on the historical ticket descriptions and reso-

lutions and is designed to recurrently generate the expert

recommendation based on the assumption that the previous

expert cannot solve the ticket.

Table 1 shows the summary of the related ticket

automation works and the proposed method in this paper:

2.2 Sequence to Sequence

Inspired by the recurrent neural network-based encoder-

decoder model, Sutskever et al. [25] proposed the seq2seq

model, which is now widely used for many scenarios such

as machine translation, image caption generation, and

speech-to-text conversion. To improve the performance of

seq2seq model, Bahdanau et al. [26] modified the original

seq2seq model using the attention mechanism to reduce the

information loss caused by compressing the source sen-

tence into a hidden vector. Furthermore, Kenesh et al. [27]

constructed the seq2seq model based on the reinforcement

learning and tried to address the exposure bias and incon-

sistency between train/test measurement in the original

seq2seq model. Pent et al. [28] proposed a seq2seq-based

approach for mapping natural language sentences to

abstract meaning representation semantic graphs. Also,

seq2seq was used in aspect term extraction, where the

source sequence and target sequence is composed of words

and labels, respectively [29]. Huang et al. [30] proposed an

end-to-end approach which can recognize multiple lan-

guages in images considering data imbalance between

languages. Lewis et al. [31] proposed a denoising autoen-

coder named BART, which combines bidirectional and

auto-regressive transformers for pretraining sequence-to-

sequence models, and BART is effective for text genera-

tion after fine-tuning. In addition, Mao et al. [32] proposed

GAR (generation-augmented retrieval) for answering open-

domain questions, which enriches the semantics of the

queries by generating contexts for answer retrieval. These

methods are effective for text generation and augmentation

based on contextual information; however, ticket descrip-

tions are context-free, which is difficult for relevant

information extraction. The principle of seq2seq model is

to transform the sequential source data into the target data

(e.g., English to Chinese, image to text, and question to

answer). SSR-TA is to transform the ticket description into

the corresponding resolution for capturing the potential and

1818 Neural Computing and Applications (2024) 36:1815–1832

123



useful features which is capable of representing tickets and

improve the performance of the expert recommendation.

3 Method

SSR-TA mainly consists of three components: a descrip-

tion encoder, a resolution decoder, and an expert recom-

mendation network. Figure 2 shows the overall structure of

SSR-TA. The description encoder is used to transform the

description of ticket into the potential representation of

knowledge to the ticket (i.e., the hidden state). The reso-

lution decoder, which helps the description encoder

improve the effectiveness of representing the ticket, is to

generate the corresponding resolution of the ticket based on

the hidden state. The expert recommendation network will

recurrently generate appropriate expert to solve the ticket

based on the the hidden state which is fine-tuned using an

attention mechanism.

3.1 Data preprocessing

Table 2 illustrates the primary information of a ticket,

mainly including structured and unstructured fields. The

structured field contains ID, Type, Status, Datetime, and

Expert, where these fields are generated automatically. In

detail, ID is the index of the ticket, Type is the problem

category, Status indicates whether the ticket is solved,

Datetime is the generation time, and Expert is the expert

who solved the ticket. The unstructured field contains the

exception description generated by user/monitor system

(i.e., Description) and the corresponding resolution pro-

posed by the expert (i.e., Resolution). The notations men-

tioned in this paper are summarized in Table 3.

Suppose each ticket can be represented by a triple

ðD;R;EÞ, where D is the description of the ticket, R is the

corresponding resolution, and E is the expert who solved

the ticket. In detail, D can be represented by a sequence

½d1; d2; :::; di; :::; dm;\EOS[ �, where di means the ith
word in the description and ‘\EOS[ ’ is a special end-of-

Table 1 The summary of the

related ticket automation works

and the proposed method in this

paper

Article Task Methods

Zeng et al. [8] Ticket classification Greedy algorithm

Xu et al. [7] Ticket classification Signature matching

Alessandro et al. [18] Ticket classification BERT, multi-level

Piero et al. [16] Ticket classification RF, encoder-combiner-decoder

Zhou et al. [19] Resolution recommendation KNN

Zhou et al. [9] Resolution recommendation Siamese neural network

Wang et al. [10] Resolution recommendation Hierarchical multi-armed bandits

Xu et al. [21] Expert recommendation Two-stage expert recommendation

Han et al. [11] Expert recommendation GCN, DNN

This paper Expert recommendation Encoder–decoder, attention

Fig. 2 The overview of SSR-TA
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sentence symbol. Similarly, R is denoted as

½r1; r2; :::; rj; :::; rm0 ;\EOS[ �, where rj means the jth
word in the resolution. m is the length of the description

sequence and m0 is the length of the resolution sequence.

Each word is represented by a vector, which can be learned

through the embedding layer based on the word embedding

mechanism. Also, E ¼ ½e1; e2; :::; ek; :::; eK � is the expert

label of the ticket, where ek ¼ 1 indicates that the kth
expert can solve the ticket and ek ¼ 0 means the expert

cannnot solve the ticket.

3.2 Model architecture

3.2.1 Description encoder

We use a bidirectional gate recurrent unit (GRU) network

to construct the description encoder, and consider the word

embedding of the ticket description D as the input. The

output of the encoder hm is considered as the hidden state

vector z, which contains the contextual information of the

description. At each step i, the corresponding hidden states

h
 

i and h
!

i are generated based on the corresponding input

di and the previous hidden states h
 

i�1 and h
!

i�1 from two

directions, respectively:

h
 

i ¼ f ðdi; h
 

i�1Þ; ð1Þ

h
!

i ¼ f ðdi; h
!

i�1Þ: ð2Þ

The output of the encoder hm is generated as below:

hm ¼ ½ h
 

m; h
!

m�: ð3Þ

Table 2 A ticket example
Fields Values

ID 19027525

Datetime 2014-04-29 06:00:12

Type Connectivity

Status Closed

Expert Lynn.Ridge

Description Failed to reconnect to PatrolAgent on host AVPMD623, port 3181

Will retry in 3 timer ticks

Resolution Job failed due to GFT connectivity issue. We have checked and

restarted the job. It completed successfully

Table 3 Notations mentioned in

this paper
Notation Description

D The description of ticket

R The resolution of ticket

E The expert label sequence of ticket

m The length of the description sequence

m0 The length of the resolution sequence

\EOS[ The special end-of-sentence symbol

k The kth expert in the sequence

K The number of experts

E The recommended expert sequence of ticket

En�1 The ðn� 1Þth recommendation result

hi The ith hidden state output by encoder

z The hidden state output by encoder last layer

H All hidden states output by encoder

~W The attention parameter of the recommendation network

Wn The attention weight for the nth recommendation

N The number of experts recommended by model for a ticket

pk The probability of the kth expert being recommended by the model

set() The same number of experts in the recommended sequence
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3.2.2 Resolution decoder

The resolution decoder of SSR-TA is an original GRU that

is trained to generate the resolution sequence R based on

the hidden state vector z. In detail, the decoder generates

the current hidden state h
0

j and the prediction of current

word rj based on the previous hidden state h
0
j�1 and the

previous word rj�1 at each step j, where the hidden state

vector z is considered as the initial hidden state h
0
1. The

conditional probability of resolution sequence is defined as:

Pðr1; r2; :::; rm0 jd1; d2; :::; dmÞ

¼
Yn

j¼1
Pðrjjz; r1; r2; :::; rj�1Þ;

ð4Þ

where the left-hand side of Eq. (4) represents the proba-

bility of the model generating the corresponding resolution

for each word based on the ticket description. The right-

hand side represents the product of probabilities of gener-

ating each word of the resolution based on the intermediate

variables generated by the encoder.

3.2.3 Expert recommendation

The expert recommendation network will generate a

sequence of experts recurrently based on the hidden state

vector z from the description encoder. SSR-TA is designed

to generate the next expert based on the assumption that the

previous expert cannot solve the ticket. We adopt an

attention mechanism to implement this recurrent recom-

mendation process, defined as Eqs. (5) and (6):

Wn ¼ tanh ~W � En�1;H
� �� �

; ð5Þ

zn ¼ Wn � H; ð6Þ

where Wn is the attention weight for the nth recommen-

dation, En�1 is the ðn� 1Þth recommendation result, H is

all the hidden states of the description encoder, zn is the nth

hidden state vector, and the ~W is a trained parameter. For

example, the first hidden state vector z1 is used to generate

the first recommended expert e1. The attention weight W2

is generated based on the current recommendation result E1

and all hidden states from the description encoder H. Then,

the attention weight will be combined with all the hidden

state states H to obtain the hidden state vector z2, which is

used to recommend another appropriate expert e2. The

expert recommendation network generates the next rec-

ommendation result based on the assumption that the cur-

rently recommended expert is unable to solve the ticket and

finally obtains a specified number of expert recommenda-

tion sequences. Then, the new ticket will be assigned to the

first expert in the recommended sequence. If the expert

cannot solve the ticket, the ticket will be passed on to the

subsequent experts in the sequence until the ticket is

resolved or the time limit is exceeded.

3.3 Objective function

SSR-TA has three objectives, including the description

translation, the accuracy of recommendation, and the dis-

parity of recommendation. Therefore, three objective

functions are designed to optimize our proposed model.

The objective function theoretically aims to improve the

accuracy of expert recommendations and shorten the steps

to resolve tickets. The objective function for the descrip-

tion translation is to make the output of the resolution

decoder as close to the real resolution as possible, which is

defined as:

Objectivedt ¼ � log PðR j DÞ; ð7Þ

where the D and R are the ticket description and the cor-

responding resolution, respectively.

For the recurrent recommendation network, the accu-

racy of recommendation means the probability of the

expert recommended by SSR-TA each time is the true

expert who solved the ticket, and the disparity of recom-

mendation denotes the experts should be unique in the

recommendation sequence. The objective function for the

accuracy of recommendation is defined as Eq. (8):

Objectivear ¼ �
1

N

XN

n¼1

XK

k¼1
ek log ðpkÞ; ð8Þ

where ek is the kth expert and pk denotes the probability of

recommending the expert, K is the number of experts, and

N indicates the length of the recommended expert

sequence. The objective function for the disparity of rec-

ommendation is defined as Eq. (9):

Objectivedr ¼ N � setðEÞ; ð9Þ

where E is the recommended expert sequence and set()

represents the number of unique experts in the sequence.

Finally, three hyperparameters a1, a2 and a3 are intro-

duced to balance SSR-TA among the description transla-

tion, the accuracy of recommendation, and the disparity of

recommendation. A joint objective function is defined as

below:

Objective ¼� a1 log PðR;DÞ � a2
1

N

XN

n¼1

XK

k¼1
ek log ðpkÞ

þ a3ðN � setðEÞÞ:
ð10Þ

The values of a1, a2, and a3 are set to 0.2, 0.3, and 0.5,

respectively.
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3.4 Train and prediction

The training process of SSR-TA is described in Algo-

rithm 1. The inputs of SSR-TA are the ticket description D,

the corresponding ticket resolution R, the length of the

recommended expert sequence N, and the expert label of

the corresponding ticket E. The output is the recommended

expert sequence S. In detail, the model will generate an

empty recommendation sequence S, and the first hidden

state vector z1 is obtained from the description encoder.

Then, based on z1, the resolution decoder predicts the

corresponding resolution of the ticket, while the first rec-

ommendation result E1 is generated by the model, and the

most probable expert e1 in E1 is added to the sequence S.

For the loop (i.e., Step 6 to 10), the model will generate the

next hidden state vector zn based on the previous recom-

mendation result En�1, and obtain the next recommenda-

tion expert en. This loop will be repeated until the

recommendation sequence S is filled by N recommended

experts. During the training process, the teach-forcing [33]

is used to guarantee the efficient convergence while

ensuring the robustness of the model. The parameters of the

SSR-TA model are initialized based on the distribution

characteristics of the ticket data. Subsequently, the

parameters are fine-tuned during the subsequent training

process based on the experimental results. The model was

trained on two separate ticket datasets for 400 and 300

epochs, respectively.

Algorithm 1 Seq2seq-based Recurrent Expert Recommendation

The trained model can be used to recommend experts

for incoming tickets. The process of prediction is similar to

the training process, the description of a new ticket will be

input into a pre-trained model. The model generates the

next recommendation result based on the assumption that

the currently recommended expert is unable to solve the

ticket, and finally obtains a specified number of expert

recommendation sequences. Then, the new ticket will be

assigned to the first expert in the recommended sequence.

If the expert cannot solve the ticket, the ticket will be

passed on to the subsequent experts in the sequence until

the ticket is resolved or the time limit is exceeded. If the

incoming ticket can be solved by an expert in the recom-

mendation sequence, we consider that the recommendation

is effective. Furthermore, the true resolver is ranked higher

in the recommendation sequence, which means the model

is more efficient. After the prediction, the resolution pro-

posed by the true resolver for the corresponding ticket can

be used to improve the robustness of the model. In other

words, if the description translation loss of new tickets

reaches the predefined threshold, the model can be updated

based on these tickets.

4 Experiments

In this section, we conduct experiments on two real-world

datasets to evaluate the performance of SSR-TA for the

expert recommendation and mainly discuss the following

issues:
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1. Ablation experiment: Whether the resolution decoder

and recurrent recommendation network are effective

for the expert recommendations?

2. Model exploration: Do the different structures of the

seq2seq model and length of sequence have impacts on

the performance of the expert recommendations?

3. Performance evaluation: How does the performance of

SSR-TA compare to the performance of baselines?

4. Case study: What is the difference between the

effectiveness of SSR-TA and baselines on the real-

world datasets?

The implementations of SSR-TA and baselines are pre-

sented at Github: https://github.com/coderxor/SSR-TA.

4.1 Datasets

The ticket datasets, TDS-a and TDS-b, were collected from

different IBM IT service system. Table 4 shows the num-

ber of tickets and experts in the corresponding datasets.

Both datasets contain duplicate tickets and unsolved tick-

ets, 15,188 and 10,693 tickets over two datasets were

selected for experiments, and the experts solved tickets less

than 50 are removed. The training and testing datasets were

split in a ratio of 9:1. All training data for tickets includes a

description and its corresponding resolution. Incomplete

description texts were not specially processed. Because

almost all ticket descriptions contain numbers, dates, and

special symbols (such as ‘WVPMA584 j 03/02/2014’, ‘%’,

‘#’), and the description of the ticket submitted by the user

may contain abbreviations and spelling errors (such as

‘immed’ means immediate ). Then we performed symbol

removal, stop word removal, and lemmatization for

description and resolution for all selected tickets. Some

selected ticket examples from two datasets are shown in

Table 5. Due to the sensitive nature of operations and

maintenance (O&M) ticket data related to core business

operations, there are currently no publicly available O&M

ticket datasets. Therefore, the experimental section of this

paper utilized ticket data provided by IBM, which pri-

marily originated from the software systems domain and is

considered representative to some extent. In the future, if

there are publicly available O&M ticket datasets, we will

conduct experiments to validate the proposed methods in

this paper.

4.2 Metrics

To evaluate the performance of the expert recommenda-

tion, three metrics are used: resolution rate (RR) [34], mean

step to resolver (MSTR) [35], and mean reciprocal rank

(MRR) [11].

RR represents the proportion of the tickets that can be

solved. For example, if the true resolver (i.e., expert) to a

ticket can be found in the recommendation sequence within

the length N, it means the ticket can be solved. RR is

defined as follows:

RRðTÞ ¼
P

t2T RðtÞ
j T j ; ð11Þ

where R(t) is 1 if the ticket t is solved and 0 otherwise,

while T is the set of tickets.

MSTR represents the average number of steps to reach

the resolver in the recommendation sequence. The smaller

MSTR is, the more efficient the system is. The minimum

value of MSTR is 1, and MSTR is defined as:

MSTRðTÞ ¼
P

t2T PðtÞ
j T� j ; ð12Þ

where T� represents the set of tickets solved, and j T� j is
the number of tickets in the set. For each ticket t, P(t)

means the position of the true resolver in the recommen-

dation sequence. For example, if the recommendation

sequence is S ¼ ½e1; e2; en; :::; eN � and true resolver is en,

then PðtÞ ¼ 3.

MRR represents the ranking of the true resolver corre-

sponding to the ticket within the recommendation

sequence:

MRRðTÞ ¼ 1

j T� j
PjT�j

t¼1
1

rankt
; ð13Þ

where rankt denotes the position of the corresponding true

resolver in the recommendation sequence for the ticket t.

4.3 Baselines

To evaluate the effectiveness of SSR-TA, we compare

SSR-TA with several baselines.

1. SVM [36]. SVM is a classic linear classifier, which is

used to predict the probability of an expert solving a

ticket. TF-IDF is used to obtain the representation

Table 4 The number of tickets

and experts on two datasets
Dataset All ticket Distinct description Distinct resolution Expert

TDS-a 72,977 15,188 8574 64

TDS-b 23,935 10,693 7452 256

Neural Computing and Applications (2024) 36:1815–1832 1823

123

https://github.com/coderxor/SSR-TA


vector of the ticket description which is considered as

the input of SVM.

2. XGBoost [37]. XGBoost is a scalable machine learning

system for tree boosting, which is to predict whether

the expert can solve the ticket. TF-IDF is still used to

learn the representation of ticket descriptions.

3. RNN-uniform [38]. RNN-based text classification is a

deep learning approach, and the LSTM layer can

capture semantic information in variable-length

sequences. The word embedding of ticket description

is considered as the input of the RNN model which is

to provide the expert recommendation sequence.

4. CNN-rand [39]. This model casts the words in a ticket

description as an embedding matrix, where the matrix

will be classified through convolutional and max-

pooling layers.

5. DeepRouting [11]. DeepRouting applies the text and

graph similarity to predict the true resolver of the

ticket. The deep structured semantic model is used to

obtain the text-view representation of a ticket, and the

graph convolutional network is adopted to learn the

graph-view representation of expert relationships. For

each expert, we sample 40 tickets it solved for training

the GCN model. Moreover, according to the parameter

settings in the original text, for each positive pair (i.e.,

a ticket which is not solved by the expert), 19 negative

experts are sampled.

6. BART [31]. BART is a denoising autoencoder com-

bining bidirectional and auto-regressive transformers

for pretraining sequence-to-sequence model. We

applied pre-trained BART to recommend the ticket

expert sequence by giving the ticket description.

4.4 Ablation experiment

In this section, we investigate whether the resolution

decoder and the recurrent recommendation network are

effective for the expert recommendation.

Figure 3 shows the resolution rate and Table 6 shows

MRR and MSTR of SSR-TA using different combinations

of components, where � is the description encoder, ` is

the resolution decoder, and ´ is the recurrent recommen-

dation network. As observed from Fig. 3 and Table 6, the

models without the resolution decoder (i.e., � and �?´)

perform worse than the seq2seq-based models (i.e., �?`

and �?`?´). In other words, the description translation

loss is capable of improving the representation of ticket

description which is effective for the expert recommenda-

tion. Moreover, the models with ´ outperform those

without ´ (especially when the recommended sequence

Table 5 Some ticket examples from two datasets

Dataset Description Resolution

TDS-a sppwa928: Available Real Memory is low. The percentage of

available real memory is 5.0 percent

ProblemSolutionText: we have validated the application and its BAU

AVPMD504: File system / is low. The percentage of used

space in the file system is 90 percent. Threshold: 90 percent

Removed excess files and current filesystem usage now lower than

threshold. According to System Operations Procedures closing the

ticket accordingly

lvpmi027: A high percentage of system CPU is being

used.(99.98 percent)

Server CPU usage was checked and is within normal parameters of

operation. This incident will fall into the Defect Prevention Process

Patrol Agent Offline: Failed to reconnect to PatrolAgent on

host AVPMD580, port 3181. Will retry in 3 timer ticks

verified connectivity

lppww665: The syslogd process is not running No actions taken since the process is running as expectedThis incident

will fall into the Defect Prevention Process

TDS-b b1pavreconapp01(161.178.193.234) is unreachable. The host

has failed to respond to the ping request

Server was rebooted under change # CH165505

01.11 ET Job DOSW05P Abended at step DOS28090 with

CC=SB37

Insufficient space in output dataset

Corrective Action ACR_AC_SVC_WIN (101) failed.

(Received during suppression) Service in alert state

Service will be started automatically whenever required

174312 9015.00 SEV-2 TRANSFER STEP: FAILED FILE:

TRANSEAPPRD. EPTRN3 #M06EC122355Z9Q

File has been re-transmitted successfully

PowerHA Event reported by AVPMD592 AVPMD592 Mar 1

02:19:22 AVPMD592 user:notice HACMP for AIX:

EVENT COMPLETED:network_up_complete AVPMD592

net_ether_02 0

Issue being worked on imr 19027973
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length is less than 5), which means that the recurrent rec-

ommendation network improves the ranking of the true

resolver in the recommendation sequence. The phe-

nomenon further supports our assumption that the model

will recommend another appropriate expert when the pre-

vious experts in the sequence cannot solve the ticket. In

summary, the experimental results show that the seq2seq

structure improves the effectiveness of the expert recom-

mendation, while the recurrent recommendation network

improves the efficiency by reducing the number of steps to

find true experts.

Fig. 3 The RR of ablation

experiment

Table 6 The MRR and MSTR of ablation experiment

Model TDS-a TDS-b

MRR MSTR MRR MSTR

� 0.719 1.912 0.670 2.464

�?` 0.828 1.474 0.730 2.117

�?´ 0.731 1.899 0.681 2.422

�?`?´ 0.843 1.352 0. 743 2.043

The representations of terms are: � the description encoder, ` the

resolution decoder, ´ the recurrent recommendation network

Bold indicates the best performance in the corresponding column (i.e.,

metric)
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4.5 Model exploration

In this section, we explore if the different structures of the

seq2seq model have impacts on the performance for the

expert recommendations and the impact of the length of the

ticket text sequence on the recommended results.

Figure 4 represents the resolution rate and Table 7

shows MRR and MSTR of SST-TA with different seq2seq

structures, where Bi-GRU and Bi-LSTM are RNN-based

seq2seq models, and CNN-based seq2seq model is com-

posed of convolutional layers. The result shows that the

RNN-based models perform better than CNN-based model

(especially on TDS-a), which means the sequential features

Fig. 4 The resolution rate of

model exploration

Table 7 The MRR and MSTR of model exploration

Model TDS-a TDS-b

MRR MSTR MRR MSTR

Bi-GRU 0.843 1.352 0.743 2.043

Bi-LSTM 0.842 1.352 0.741 2.044

CNN 0.815 1.619 0.691 2.379

Bold indicates the best performance in the corresponding column (i.e.,

metric)
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captured by the description translation are effective for the

expert recommendation. In addition, the performance of

RNN-based models is close due to the similar structure of

Bi-GRU and Bi-LSTM, while Bi-GRU is slightly better

than Bi-LSTM. Overall, Bi-GRU is applied to construct

SSR-TA because Bi-GRU has better performance and

fewer parameters for faster training.

Table 8 shows the impact of different ticket description

and resolution sequence lengths on the ticket resolution

rate (with the recommended sequence length set to 10). In

dataset TDS-a, we selected data with ticket description

length less than 30 for experimentation, the impact of ticket

description lengths of 10, 20, and 30 on the ticket resolu-

tion rate were explored. The experimental results show

that, overall, the longer the ticket description length, the

more ticket information it contains, and the higher the

ticket resolution rate. In dataset TDS-b, all tickets with

description length less than 60 was used for experimenta-

tion, the impact of ticket description lengths of 20, 40, and

60 on the ticket resolution rate were explored. The exper-

imental results show that the ticket resolution rate increases

with the increase in ticket description length, but the

overall change is not significant, possibly due to the weaker

ticket description sequence information in this dataset.

Figure 5 shows the convergence status of the model and

the combination of various components on TDS-a. Fur-

thermore, Fig. 5(a)-(d) illustrates the performance of the

joint objective function, the objective function for the

description translation, the objective function for the

accuracy of recommendation, and the objective function

for the disparity of recommendation, respectively. In

addition, Fig. 5(e)-(g) show the performance of the com-

bination of corresponding objective functions. As observed

from Fig. 5, the initial loss value of the objective function

for the disparity of recommendation is the smallest, we

hope that the model can pay more attention to the disparity

of experts in the recommended sequence. Therefore, we set

a3 to 0.5, and fine-tuned a1 and a2 through grid search

based on the experimental results. In addition, the training

of the combination of various components converged after

300 epochs, indicating the effectiveness of each component

in SSR-TA.

4.6 Performance evaluation

In this section, we compare SSR-TA with the baselines on

the real-world datasets, where Fig. 6 illustrates the reso-

lution rate and Table 9 shows MRR and MSTR. For SVM

Table 8 The RR@10 of

different sequence length
RR@10 TDS-a TDS-b

LoD@10 LoD@20 LoD@30 LoD@20 LoD@40 LoD@60

LoR@10 0.877 0.803 0.974 0.955 0.958 0.982

LoR@20 0.902 0.887 0.896 0.957 0.956 0.965

LoR@30 0.937 0.815 0.995 0.968 0.960 0.993

LoD length of ticket description, LoR length of ticket resolution, RR resolution rate

Fig. 5 Convergence status of the model and the combination of various components on TDS-a
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and other classifiers, the historical ticket descriptions are

used as model inputs, while the experts are treated as

classification labels. The classifier predicts the probabilities

of the ticket belonging to each expert based on the ticket

description. The expert recommendation sequence is

obtained by sorting the probabilities, and the MRR and

MSTR metrics are calculated based on the position of the

true expert in the sequence.

As observed from Fig. 6 and Table 9, SSR-TA outper-

forms other baselines. Notice that the RR of SSR-TA and

DeepRouting increases faster than other baselines on TDS-

a, especially when the length of the recommendation

sequence is less than 3 (i.e., N� 3). The experimental

results show that the recurrent recommendation of SSR-TA

and the ticket transfer of DeepRouting effectively improve

the ranking of the true resolver in the recommendation

sequence. In addition, on TDS-b, different from

DeepRouting, SSR-TA also performs better in RR when

N� 3, which means that the generalization ability of the

recurrent recommendation network is better than that of the

ticket transfer. Additionally, the pre-trained BART is out-

performed by DeepRouting and SSR-TA. Compared to

BART, which only makes one-time recommendations

based on ticket descriptions, SSR-TA adjusts the subse-

quent recommendations with the recurrent recommenda-

tion network, which reduces the steps of resolving tickets.

Furthermore, the performance of SSR-TA w/o ` is close to

that of other baselines, which further shows that the

Fig. 6 The RR comparisons of

SSR-TA with baselines
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resolution decoder is necessary and effective for the expert

recommendation.

In addition, Table 10 shows the training time of SSR-

TA and baselines. All models use the same datasets(TDS-a

and TDS-b) and experimental environment and are

implemented with PyTorch, and the test system is Linux

with 32 GB of RAM and 1080 Ti GPU. The results show

that the training time of SSR-TA is more than that of tra-

ditional classification models (e.g., SVM and XGBoost),

close to other RNN-based methods (e.g., RNN-uniform),

but less than that of DeepRouting and BART. DeepRouting

is time-consuming due to the application of the graph

model GCN, while BART is constructed based on BERT,

which is a model comprising millions of parameters. In

summary, compared to DeepRouting and BART, the per-

formance of SSR-TA is more effective and efficient, while

comparing to the traditional methods (i.e., SVM and

XGBoost) and neural network-based methods (i.e., RNN-

uniform and CNN-rand), SSR-TA is more effective with

appropriate efficiency.

In conclusion, the description translation (i.e., the

description encoder and the resolution decoder) improves

the effectiveness, while the recurrent recommendation

network improves the efficiency (i.e., the ranking of the

true resolver in the recommendation sequence) of the

expert recommendation.

4.7 Case study

As observed from the comparison between SSR-TA and

the baselines in the real-world datasets, we notice that the

performance of the baselines and SSR-TA are similar on

TDS-b, which is different from that on TDS-a. Therefore,

we further investigate the difference between TDS-a and

TDS-b in this section.

As mentioned earlier, TDS-a and TDS-b are collected

from different IT managed service systems; therefore, there

exist some differences between tickets. For example, the

description of a user-generated ticket ‘‘AGPMA506: A

high percentage of CPU is being used. (93 percent),’’

which is similar to the natural language. However, the

system automatically generated tickets such as

‘‘EXPCHNG_8193_WVPMA582 WVPMA582 06:05:43

Message Error Information: 1) Exception Details: Error

Code:8193 Severity Code:2 Message:Exception occurred

at Business Layer while Adding SourceRequired Error

Type,’’ which are mainly constructed by a template con-

taining a large number of non-English words (e.g.,

EXPCHNG). In other words, the RNN-based model

demonstrates proficiency in learning from user-generated

tickets that contain substantial sequential information.

However, it faces challenges in capturing the underlying

representation of system-generated tickets that lack

meaningful sequential information, resulting in ineffective

representation of such tickets. Table 11 presents the pro-

portion of the user-generated tickets and the system-gen-

erated tickets in TDS-a and TDS-b. As observed from

Table 11, the proportion of system-generated tickets in

Table 9 The MSTR and MRR comparisons of SSR-TA with

baselines

Model TDS-a TDS-b

MRR MSTR MRR MSTR

SVM 0.575 2.788 0.629 2.614

XGBoost 0.704 1.972 0.719 2.197

RNN-uniform 0.720 1.947 0.676 2.451

CNN-rand 0.692 2.123 0.669 2.485

DeepRouting 0.767 1.793 0.686 2.401

BART 0.723 1.923 0.678 2.450

SSR-TA w/o ´ 0.828 1.474 0.730 2.117

SSR-TA w/o ` 0.731 1.899 0.681 2.422

SSR-TA 0.843 1.352 0.743 2.043

Bold indicates the best performance in the corresponding column (i.e.,

metric)

Table 10 The training time comparisons of SSR-TA with baselines

Model Training time (s)

TDS-a TDS-b

SVM 321 68

XGBoost 10 3

RNN-uniform 1635 685

CNN-rand 807 316

DeepRouting 5913 2581

BART 11,843 5059

SSR-TA w/o ´ 1832 747

SSR-TA w/o ` 1683 664

SSR-TA 1866 794

Table 11 The number of user-generated and system-generated tickets

on two datasets

Dataset User-generated System-gengerated Total

TDS-a 13,680 1508 15,188

TDS-b 4103 6590 10,693

Table 12 The RR@10 of different type tickets on two datasets

RR@10 User-generated System-gengerated Total

TDS-a 0.998 0.987 0.995

TDS-b 0.996 0.980 0.993
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TDS-b is much higher than that in TDS-a. Table 12 shows

that when the recommended sequence length is 10, the RR

of the model for user-generated tickets is slightly higher

than that for system-generated tickets on both datasets.

Moreover, Fig. 6a shows that RNN-uniform performs

better than other traditional top-N recommendation models,

while RNN-uniform performs similar to other baselines in

Fig. 6b. In other words, the RNN-based models (i.e., SSR-

TA and RNN-uniform), which are capable of capturing the

sequential feature, perform better on TDS-a containing

more user-generated tickets.

4.8 Discussion

The proposed SSR-TA in this paper is used to recommend

experts to solve tickets. The seq2seq model captures fea-

ture information by translating ticket descriptions into

corresponding resolutions, and the recurrent recommen-

dation network is designed to obtain expert recommenda-

tion sequences.

For ticket recommendation, SSR-TA applied the seq2-

seq model to combine the features from ticket description

and resolution to assist the expert recommendation, and it

also can be used for ticket resolution generation. Moreover,

the recurrent recommendation network adopts an attention

mechanism to generate the expert recommendation

sequences based on the assumption that the previous expert

in the sequence failed to solve tickets. The recurrent rec-

ommendation network improves the ranking of the true

resolver in the recommendation sequence, which means the

model reduces the steps to find appropriate experts for

solving tickets. In other words, the application of SSR-TA

is capable of solving anomalies more quickly and saving

more human costs in practice.

Finally, there exist some limitations to our proposed

method. The performance of expert recommendations for

the system-generated tickets is worse than that for the user-

generated tickets. Because the seq2seq model (i.e., SSR-

TA) is specialized in capturing the sequential information

from natural language (i.e., user-generated tickets), the

system-generated tickets mainly consist of unfamiliar

words and specific terms without contextual information.

SSR-TA is also affected by the quality of the ticket data.

Unknown tickets and data imbalance can lead to inaccu-

racies in the model’s recommendation results. In addition,

training SSR-TA is much more time-consuming than

training those traditional machine learning methods (i.e.,

SVM and XGBoost), which is difficult to apply in practice.

Furthermore, limited to the architecture of SSR-TA, SSR-

TA can select and recommend experts or existing resolu-

tions for the known tickets; however, SSR-TA cannot

generate personalized resolutions for unknown tickets.

5 Conclusion

In this paper, we proposed a seq2seq-based model SSR-TA

combined with a recurrent recommendation network to

recommend appropriate experts for the ticket automation.

The description of solved tickets is translated into the

corresponding resolution for capturing the potential and

useful features, which is capable of representing tickets and

improving the effectiveness of the expert recommendation.

In addition, the recurrent recommendation network

improves the ranking of the true resolver in the recom-

mendation sequence based on the assumption that the

previous expert cannot solve the ticket. The experimental

results show that SSR-TA improves the effectiveness and

the efficiency of the expert recommendation.

In future work, we will continue to study the following

issues. First, we are going to improve the initial resolution

rate of the model in processing system-generated tickets.

Second, the decoder of SSR-TA is not used when recom-

mending an expert sequence for an incoming ticket. We

will recommend historical resolutions for the incoming

ticket using the similarity between historical resolutions

and the decoder output. Finally, we plan to explore more

variants of seq2seq for ticket expert recommendation.
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