Information Systems Frontiers
https://doi.org/10.1007/510796-020-10026-3

1')

Check for
updates

LogGAN: a Log-level Generative Adversarial Network for Anomaly
Detection using Permutation Event Modeling

Bin Xia' - Yuxuan Bai' - Junjie Yin' - Yun Li' . Jian Xu?

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

System logs that trace system states and record valuable events comprise a significant component of any computer system
in our daily life. Each log contains sufficient information (i.e., normal and abnormal instances) that assist administrators
in diagnosing and maintaining the operation of systems. If administrators cannot detect and eliminate diverse and complex
anomalies (i.e., bugs and failures) efficiently, running workflows and transactions, even systems, would break down.
Therefore, the technique of anomaly detection has become increasingly significant and attracted a lot of research attention.
However, current approaches concentrate on the anomaly detection analyzing a high-level granularity of logs (i.e., session)
instead of detecting log-level anomalies which weakens the efficiency of responding anomalies and the diagnosis of system
failures. To overcome the limitation, we propose an LSTM-based generative adversarial network for anomaly detection based
on system logs using permutation event modeling named LogGAN, which detects log-level anomalies based on patterns (i.e.,
combinations of latest logs). On the one hand, the permutation event modeling mitigates the strong sequential characteristics
of LSTM for solving the out-of-order problem caused by the arrival delays of logs. On the other hand, the generative
adversarial network-based model mitigates the impact of imbalance between normal and abnormal instances to improve the
performance of detecting anomalies. To evaluate LogGAN, we conduct extensive experiments on two real-world datasets,
and the experimental results show the effectiveness of our proposed approach on the task of log-level anomaly detection.

Keywords Anomaly detection - Generative adversarial network - Log-level anomaly - Permutation event modeling

1 Introduction

Anomaly detection is an essential task in protecting our
daily life from those intended or unintended malicious
attacks such as the network intrusion, mobile fraud, indus-
trial damage, and abnormal condition of system (Chandola

P4 Bin Xia
bxia@njupt.edu.cn

Yun Li
liyun@njupt.edu.cn

Jian Xu
dolphin.xu@njust.edu.cn

Jiangsu Key Laboratory of Big Data Security
and Intelligent Processing, Nanjing University
of Posts and Telecommunications, Nanjing, China

Nanjing University of Science and Technology,
Nanjing, China

Published online: 16 June 2020

et al. 2009). However, with the rapid development of com-
puter science, systems and applications become increas-
ingly complex which makes anomalies diverse and chal-
lenging to be detected even by human beings. Except for the
intended malicious attacks, unknown bugs and errors which
are seemingly controllable but caused by non-artificial rea-
son in online systems damage the secure and reliable operat-
ing environment. Therefore, the effectiveness and efficiency
of anomaly detection have become a big challenge for the
further development of information-based society.
Currently, the automated generation of logs is an
indispensable component of large scale systems. System
logs trace the status of the system and record each critical
event in detail to assist administrators in diagnosing bugs,
failures, and errors of systems. Therefore, the density of
arrival logs and the description of logs directly determine
the value of the quantity of knowledge for improving the
performance of running systems (Tang et al. 2011; Li et al.
2017). For example, if arrival logs are extremely dense, it
is a challenge to analyze the dependency between events
due to the concurrency of logs. Likewise, if the description

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10796-020-10026-3&domain=pdf
mailto: bxia@njupt.edu.cn
mailto: liyun@njupt.edu.cn
mailto: dolphin.xu@njust.edu.cn

Inf Syst Front

of logs is colloquial and obscure to represent the state of a
system, it is challenging to trace the workflows. Figure 1
illustrates the arrival frequency of system logs in practical
scenarios, where Fig. la shows the logs generated by 203
nodes during 2 days in HDFS and Figure 1b illustrates the
logs generated by 1 node during 215 days in BlusGene/L.
Observed from Fig. 1, the peak frequency of arrival logs
is 198,878/min and 152,929/hour for HDFS and BGL,
respectively. In addition, the number of normal instances is
much more than that of anomalies, and generally, anomalies
are unlabeled. Therefore, such an extremely frequent arrive
of unlabeled logs results in a significant challenge to the
prompt response and the precise diagnosis.

To overcome the challenges mentioned above,
researchers take a lot of efforts on the anomaly detection
based on system logs. The proposed approaches are mainly
categorized into the supervised, semi-supervised, and
unsupervised strategy based on the availability of labeled
data (i.e., normal and abnormal instances). Most of these
approaches have good performance in detecting anomalies
based on diverse system logs. However, there exist three
problems in restricting the further development of system
diagnosis (Bodik et al. 2010; Lin et al. 2016; Lou et al.
2010; Liu et al. 2008). First, based on a session containing
many logs and divided base on some rules (e.g., period,
transaction, and node), these approaches detect session-
level anomalies. In other words, the session will be detected
if there exists at least an anomaly, however, the abnormal
logs cannot be located. Therefore, administrators need to

250

200

150

100

50

Number of Logs (thousands)

e LH Lﬁ% 1

Time (minute)

(a) HDFS

200

150

100

o I

Number of Logs (thousands)

. Lo, Lo L

Time (hour)

(b) BlusGene/L

Fig.1 Arrival frequency of system logs in the real-world datasets

@ Springer

diagnose the workflows in the session, which is a challeng-
ing task. Second, an anomaly is not alerted until logs are
traversed in the session. In other words, the anomaly cannot
be detected and responded efficiently when the abnormal
log is arriving. Third, generally, system logs are temporal
and dependent on previous logs. However, arrival logs
are out-of-order due to unknown reasons for delays in the
systems. Therefore, the techniques mining sequential infor-
mation may capture false patterns from these out-of-order
logs. Meanwhile, the techniques capturing information
from a set of logs may ignore significant temporal fea-
tures. These issues significantly limit the effectiveness and
efficiency of system diagnosis.

In this paper, we cast the task of anomaly detection as a
pattern-based sequential prediction and propose an LSTM-
based generative adversarial network named LogGAN using
permutation event modeling to distinguishing upcoming
abnormal events based on temporal system logs. First, we
exploit a customized log parser to extract the structured
information (i.e., timestamps and signature) and transform
each log into an event. Second, the combination of events
(i.e., pattern) and the corresponding upcoming event are
collected from temporal system logs using different sliding
windows. The collected combinations of patterns and
events are utilized to construct a real training dataset. For
mitigating the strong sequential characteristics of LSTM,
the permutation event modeling is applied to combine
permutated out-of-order patterns with original upcoming
events to extending the real training dataset. Third,
LogGAN consists of two major components: (1) generator
and (2) discriminator. The generator tries to capture the
distribution of real training dataset and synthesizes plausible
instances (i.e., fake training set comprised of normal and
abnormal logs), while the discriminator aims to distinguish
fake instances from the dataset, which is built using real
and synthetic data. Finally, the fully-trained generator is
applied to detect whether the upcoming log is normal or
abnormal based on the latest events. According to the
game setting of anomaly detection, LogGAN exploits the
pattern-based training mode to mitigate the problem of the
imbalance between normal and abnormal instances instead
of using the instance-based training mode. In addition, the
LSTM-based generator identifies whether each upcoming
log is normal or abnormal, which efficiently responds
alerts of anomalies and effectively assists administrators
in diagnosing workflows instead of detecting abnormal
sessions. To the best of our knowledge, this is the first
attempt to apply a game setting (i.e., adversarial learning)
for the anomaly detection based on system logs. Our
contribution can be summarized as below:

— A generative adversarial network is proposed to
mitigate the problem of imbalance between normal and

Inf Syst Front

abnormal instances while improving the performance of
anomaly detection.

— A permutation event modeling is proposed to mitigate
the strong temporal sequential dependency of LSTM.

— An LSTM-based detector promotes the efficiency of
responding anomalies and marks anomalies of logs
instead of detecting session-level anomalies.

2 Related Work

The technique of anomaly detection is widely applied in
many practical scenarios such as the financial statement
fraud (Huang et al. 2017), the post-disaster situation
analysis (Mondal et al. 2018), and the social media
event detection (Troudi et al. 2018). Generally, the
anomaly detection (i.e., outlier detection) is categorized
as supervised, semi-supervised, and unsupervised anomaly
detections. In this section, we will briefly introduce some
popular anomaly detections in each category of techniques.

2.1 Supervised Anomaly Detection

Supervised anomaly detections operate under two general
assumptions: (1) the labels of normal and abnormal
instances are available; (2) the normal and abnormal
instances are distinguishable given the feature space. Chen
et al. proposed a decision tree-based approach to detecting
the actual failures from large Internet sites (i.e., eBay) based
on the temporal request traces (Chen et al. 2004). The
decision trees simultaneously handle the varying types of
runtime properties (i.e., continuous and discrete variables).
Therefore, the proposed approach was widely used in many
practical scenarios. Bodik et al. proposed a fingerprint (i.e.,
vector) to effectively demonstrate the performance state of
systems and implemented a regularized logistic regression-
based method for selecting the relevant metrics to build the
appropriate fingerprints (Bodik et al. 2010). The anomalies
can be precisely identified using the fingerprints which
summarize the properties of the whole data center (e.g.,
CPU utilization). Liang et al. employed several classifiers
(e.g., SVM and nearest neighbor) to detecting the failures
in the massive event logs which were collected from
the supercomputer IBM BlueGene/L (Liang et al. 2007).
Similar to Bodik et al., they also derived the specific
combination of features to effectively describe each event
log for improving the performance of classification tasks,
which demonstrates that the representation of normal and
abnormal logs is significant. The supervised methods have
a quick test phase for the online detections, however, the
extreme dependency on the quality of labels limits the

application scenarios (Jian et al. 2015; Jian et al. 2016;
Jian et al. 2016). In this paper, the proposed LogGAN is a
supervised anomaly detection algorithm and an extended
version of our previous work, where the major extension
part is the permutation event modeling. The permutation
event modeling includes a preprocessing strategy of
temporal events to addressing the problem of out-of-order
events and a training mode to further relieving the imbalance
between normal and abnormal samples (Xia et al. 2019).

2.2 Semi-supervised Anomaly Detection

The semi-supervised anomaly detection operates under the
assumption: given the feature space, the normal samples are
located closely while the anomalies are far from the clusters
of normal ones (Chandola et al. 2009). The representative
of the semi-supervised model is the nearest neighbor-based
techniques which can be categorized as (1) distance-based
neighbors, and (2) density-based neighbors. To address the
problem of the high-dimensional feature space, Zhang et al.
proposed a High-Dimension Outlying subspace Detection
(HighDOD) to searching for the optimal subset of features
to represent outliers (Ji and Wang 2006). Due to the subset
of features (i.e., low-dimensional data), the Euclidean dis-
tance is capable of describing the actual distance between
normal and abnormal instances. Besides distance-based
approaches, the density-based method is also useful to dis-
tinguish anomalies. To improve Local Outlier Factor (i.e.,
a type of popular measure to calculating the density given
the instance), Chawla et al. proposed a new measure called
Spatial Local Outlier Measure (SLOM) (Sun and Chawla
2004; Chawla and Sun 2006). Du et al. proposed LSTM-
based anomaly detection and diagnosis framework named
DeepLog based on unstructured system logs (Min et al.
2017). DeepLog analyzes and detects anomalies using the
log key and the parameter value vector to help adminis-
trators for diagnosing the system errors based on work-
flows. DeepLog is trained based on the normal patterns
in system logs and provides a way to be incrementally
updated using upcoming logs; therefore, DeepLog is cate-
gorized as semi-supervised anomaly detection. Tuor et al.
also proposed a recurrent neural network-based approach
to detecting abnormal instances where the proposed model
considered system logs as sentences in language mod-
els (Tuor et al. 2018). Compared to the supervised anomaly
detections, semi-supervised techniques do not extremely
rely on the labeled data and the distribution of observed
instances and outperform the unsupervised approaches gen-
erally. However, the selection of measuring distance is
significant for the performance of semi-supervised anomaly
detections.

@ Springer

Inf Syst Front

2.3 Unsupervised Anomaly Detection

The unsupervised technique is the most popular approach
in the domain of anomaly detection because this technique
still works even if the label of data is unknown. This
characteristic of the unsupervised technique satisfies the
assumption that anomalies are generally rare and unknown
in practical scenarios. Lin et al. proposed a cluster-
based approach (i.e., LogCluster) to addressing the log-
based anomalies detection problem based on the data
from Microsoft service product teams (Lin et al. 2016).
LogCluster aims to cluster the historical and upcoming
logs using the knowledge base, and engineers only need
to distinguish several logs (i.e., events) in each cluster that
can identify the type of anomalies which is located in
the same cluster. Therefore, it is not necessary to obtain
the label of logs, and the similarity between logs is more
essential to operate LogCluster. Lou et al. proposed a
novel anomaly detection approach to identifying program
invariants based on the unstructured console logs (Lou et al.
2010). The proposed approach concentrates on structuring
the free form description in console logs and mining the
meaningful anomalies after grouping the structured logs
with parameters. Different from the traditional anomaly
detections which construct models fitting normal instances
and distinguish instances that do not conform to the
constructed model, Liu et al. proposed a novel concept
that explicitly isolates abnormal instances (Liu et al.
2008). The proposed isolation forest (iForest) is capable of
addressing the high-dimensional problems using an attribute
selector (i.e., the characteristic of the decision tree). In
addition, iForest achieves good performance even if there

Fig.2 The framework of

. . Log Parser
anomaly detection generative

reprocessin
Historical System Logs

are no anomalies occurred in the training set. Xu et al.
proposed a PCA-based anomaly detection and visualized
the promising results using a decision tree (Wei et al.
2009). The main contribution of this work is that the
source code is considered as a reference to parse console
logs for improving the quality of structured data and the
quality data will improve the representation of console
logs (i.e., extracted distinguishable features). The advantage
of unsupervised techniques is that the approaches are
independent with the label information of the training set.
The disadvantage of unsupervised techniques is that expert
knowledge is still needed to utilize unsupervised approaches
for detecting anomalies in practical scenarios, although the
techniques reduce the massive workloads.

3 Method

In this paper, we propose a generative adversarial network-
based anomaly detection approach named LogGAN which
improves the performance of detecting anomalies. Figure 2
illustrates the overview of LogGAN. The main modules of
LogGAN are categorized into three parts:

— Log Parser: is the module to parsing unstructured logs
into structured logs (or events) which are considered as
the minimum units for the following machine learning-
based techniques.

— Adversarial Learning: is the module to training the
LSTM-based anomaly detection model based on the
timestamps, signatures, and attributes extracted from
structured log.

adversarial network

terminating

from /10.250.10.6

Q

081109,203519,145,INFO,dfs.DataNode$PacketResponder:
PacketResponder 1 for block blk_-1608999687919862906

081109,203519,145,INFO,dfs.DataNode$PacketResponder:
.Received block blk_-1608999687919862906 of size 91178

REAL
or 4

(ESTM) FAKE

l Log Parser

Real Events Vector Fake Events Vector

/Original Patterns & Subsequent Event

|
|
|
|
|
|
|
i
|
i O-O--HEE®-)
|
|
|
|
|
|
|
|
|
|

O -}
@-E©-O-H{BOO®-}

Permutation

Training Set after Permutation

«O-@--H{@OE-}
«Q-@-OH{@O®-}
«@-O-O-H{OO®-}
«@-@-O{@@®E-}
s@-O-OH@O®-}

Event Modeling _:@@}

Observed Mask

e o

o
&

Update Alternately

®
3

0000080
»000-000

o}
3

1
I
|
|
|
|
|
|
|
N
I
|
|
|
|
|
|
|
|
|

®:-0
O-®
®-0
Oe-@
@O
Q=0

o
~

081109,203518,143,INFO, df

ng block blk_-1608999687919862906 src: /
10.250.19.102:54106 dest: /10.250.19.102:50010
081109,203518,35,INFO, dfs.FSNamesystem:,BLOCK*

Generator
(LSTM)

P,
@ job_200811092030_0001/job.jar. blk_-

@ Springer

System Log Streaming

Inf Syst Front

— Anomaly Detection: is the module to detecting and
diagnosing anomalies using the LSTM-based model
and incrementally update the model based on the
upcoming logs and users’ feedbacks.

In the following parts of this section, we will introduce each
part of LogGAN in detail.

3.1 Log Parser

In the module of log parser, the original logs are converted
into the structured logs. The log parsing, which is
considered as the common preprocessing of unstructured
logs, is a significant part of the majority of log analysis
tasks. Many approaches are proposed to generate events,
which are extracted and summarized based on original
logs, for automated analysis of system (Tang et al. 2011,
Guo et al. 2018). These template-free methods parse logs
using statistical approaches. However, the performance of
these methods is not convincing because the formations
of logs from different systems are chaotic and challenging
to be captured. Therefore, in this paper, we first divide
the unstructured logs into several parts (e.g., datetime and
content) using the corresponding template, then further
extract meaningful information (i.e., event) from these
parts (Zhu et al. 2018). Generally, the event consists of three
major components: (1) timestamps, (2) signature, and (3)
parameters. To make readers fully understand the process
of log parser, Fig. 3 illustrates the examples of parsing
unstructured logs from two real-world systems (i.e., HDFS
and BlusGene/L), respectively.

Note that, HDFS and BlusGene/L are different in
the system structures and workflows, hence the parsed
structures from the first step are also different. Observed
from Fig. 3a, the timestamps, signature, and parameters are
extracted from the original log where the signature is a
static content that presents a type of logs and the parameters
record dynamic parts. The three-tuple representation (i.e.,
timestamps, signature, and parameters) effectively describes
the status of each event, which provides administrators
with sufficient references to diagnose the broken-down
system. In this paper, we assume that the pattern of events
is sufficient to determine whether the upcoming event
is abnormal or normal, therefore, only timestamps and
signature are utilized to describe temporal logs.

3.2 Adversarial Learning

In this paper, we cast the anomaly detection as a task of
adversarial learning and propose an LSTM-base generative
adversarial network named LogGAN to improve the
performance of detecting anomalies. The concept of the
generative adversarial network (GAN) was proposed by

HDFS Logs

081109,203518,143,INFO,dfs.DataNode$DataXceiver:,
Receiving block blk_-1608999687919862906 src: /
10.250.19.102:54106 dest: /10.250.19.102:50010

a
@ Structure system logs
Date 081109 Time 203518
Pid 143 Level INFO

Component | dfs.DataNode$DataXceiver
Receiving block blk_-1608999687919862906 src:
/10.250.19.102:54106 dest: /10.250.19.102:50010

Content

@ Parse structured log into selected attributes

Attributes | Value Sourses
Timstamps | 1226234118 Date & Time
Signature Receiving block % src: % dest: % | Content

[143, “INFO", "blk_-

- Pid

1608999687919862906",
Parameters & Level

“/10.250.19.102:54106",

& Content
“/10.250.19.102:50010"]
(a) HDFS
BlueGene/L Logs

1118459912 2005.06.10 R24-M0-N4-1:J18-U11 2005-
06-10-20.18.32.098827 R24-M0-N4-1:J18-U11 RAS
KERNEL INFO ciod: for node 17, read continuation
request but ioState is 0

l @ Structure system logs

Timestamps | 1118459912 Date
DateTime 2005-06-10-20.18.32.098827
Level RAS KERNEL INFO
Component | R24-M0-N4-1:J18-U11

ciod: for node 17, read continuation request but
ioState is 0

l @ Parse structured log into selected attributes

2005.06.10

Content

Attributes | Value
Timstamps | 1226234118

ciod: for node %, read

Sourses

Timestamps

Signature | continuation request but Content
ioState is %
Level
[“RAS KERNEL INFO”, “R24-M0-
Parameters & Component

N4-1:J18-U11",17,01]

& Content

(b) BlusGene/L

Fig. 3 Example of log parser to converting from logs to structured
entities

Goodfellow et al. where GAN considers a machine learning
problem as a game between two models (i.e., generator
and discriminator) (Goodfellow et al. 2014). The generator
(G) captures the distribution of real samples and generates
plausible samples which are similar with real samples in the
representation of features, while the discriminator (D) tries
to identify whether the upcoming sample is real or synthetic
one for improving the quality of samples generated by
G. The iteration repeats until both G and D converge,
then G is capable of generating ‘real’ samples. The fully-
trained G can capture the distribution of anomalies which

@ Springer

Inf Syst Front

further improves the performance of detecting whether the
upcoming log is normal or abnormal.

The original GAN, which is utilized to generate contin-
uous variables of images, do not match the scenario of pre-
dicting discrete event ID (i.e., signature) (Goodfellow et al.
2014). Therefore, we propose LogGAN to independently
generate the continuous probability of each upcoming event
instead of using the softmax layer to output the probabil-
ity distribution of overall events (Wang et al. 2017; Chae
et al. 2018). In details, given an observed set of tempo-
ral events S = {e(1), €(), ..., €(5)} from parsed system logs
and a set of event E = {ey, e3, ..., e,,} where ¢ presents a
signature of the j;, event, the task of LogGAN is to pre-
dict whether the upcoming event (i.e., log) is normal or
abnormal based on the context combinations from the set
C = {c1, 2, ..., ¢y} where ¢; demonstrates the i;;, combi-
nation (ex—2), ek—1y, €()) within a 3-size sliding window.
As a game setting, we exploit Long Short Term Mem-
ory network (LSTM) for both G and D where G aims to
generate fake normal and abnormal instances and D tries
to distinguish whether the instance is real or fake. For G,
we utilize a random noise z and a combination ¢; as the
input of LSTM! while the output is an m —dimensional vec-
tor representing the independent occurring probability of
each event in E. For D, we utilize a combination ¢; as the
input and an m —dimensional vector of the independent occur-
ring probability as the parameter” of LSTM while the output
is whether the m —dimensional vector is real or fake sample
under the contextual combination c¢;. Therefore, the objec-
tive function of G and D is defined as follows, respectively:

76 = mginzl:(]Eé ~ Pyllog(1—D(@e)] + Zl(éj —e)?)
= j=

n) 1 m R
=min) (log(1-D(€yle)+— Y (ecj—ec;)), (1)

i=1 j=1

JP = m(pin — E(]EQN P llog D(elc)]
+E¢ p, [log(1 — D(€|e))])

n

Hgn - Z(IOg D(eqlci) +log(l — D(€glci)), (2)

i=1

'Learned event embedding is used to demonstrate each event.

2In D, we cast the combination ¢; as the input of LSTM and LSTM
directly outputs the hidden layer without any manipulation. Then,
we concatenate the m—dimensional vector with the hidden layer
as an input of a two-layer full Connected neural network which
outputs whether the m —dimensional vector is real or fake as a binary
classification.

@ Springer

where 6 and ¢ is the parameter of G and D, respectively.
Note that, €, = e/ci © 0 is an m—dimensional vector
representing the independent occurring probability of each
event in E (i.e., input of D), where e/ci is the output of G
and © is the element-wise mask multiplication. o, which
is an m—dimensional observed vector (i.e., o, ; stands
for the observation of e; where 0o; € {1,0} represents
whether e; is an upcoming event next to ¢; or not), is
used to filter the occurring probability of unobserved events
in e’ci. This setting assists LogGAN to only update the
gradients based on the loss of observed events (i.e., both
normal and abnormal instances) and avoid the disturbance
generated by the unobserved one. In addition, during the
process of updating G, we apply a reconstruction error (i.e.,
diciedj—eq %) to help G capture the actual distribution
of training data for further improving the performance.
Algorithm 1 shows the overall algorithm of LogGAN in
detail.

Algorithm 1 The algorithm of LogGAN

Input:
Gy: the generator G,
Dy: the discriminator D,
B : the size of minibatch,
N': the number of maximum iteration.
Output:
Go+: converged generator G.
1: Initialize Gy and Dy with random weights 6 and ¢.
2: Sett <0

3: repeat

4: for G-steps do

5: Sample B combinations of events as a
minibatch Mg

6: Generate corresponding fake instances using

generator Gy and train Gy

7: Update Gy by 0% < 0 — £v5JC
8: end for
9: for D-steps do
10: Sample B combinations of events as a minibatch
Mp
11: Generate corresponding fake instances using
generator Gy
12: Combine the generated instances with sampled
real instances and train Dy
13: Update Dy by ¢* < ¢ — £V4JP
14: end for

15: Updatet <— ¢+ 1
16: until LogGAN converges OR t >= N
17: return Gg=.

Inf Syst Front

3.2.1 Permutation Event Modeling (PEM)

The imbalance between abnormal and normal logs and the
strong sequential dependency of LSTM are big challenges
in practical scenarios of anomaly detection. In this paper, we
propose a permutation event modeling strategy that consists
of two modules to solve these problems.

First, to mitigate the impact of the imbalance between
abnormal and normal logs, we convert the conventional
instance-based training mode into a pattern-based training
mode. In the previous research, the proposed method
uses sliding windows to split temporal logs and construct
independent training samples (Min et al. 2017). There exist
two issues under this training setting. On the one hand,
anomalies are extremely sparse, therefore, it is hard for
models to capture the patterns of anomalies sufficiently.
On the other hand, the instance-based training mode will
confuse the model because there may be several possible
normal and abnormal events followed by a specific pattern.
The pattern-based training mode is to collect possible
subsequent abnormal and normal events followed by a
specific pattern in the training set and considers the pair of
pattern and possible subsequent events as a training sample.
In other words, the label of a pattern is an m —dimensional
vector where the observed normal events are set as 1, and
the observed abnormal and unobserved events are set as
0. The observed mask o, is used to keep the gradient of
observed events and filter the gradient of unobserved ones.
Based on the pattern-based training mode, the number of
training instances, especially for normal logs, has dropped
dramatically. Therefore, this strategy effectively mitigates
the imbalance between abnormal and normal logs while
increasing the efficiency of the training stage.

Second, to mitigate the strong sequential dependency
of LSTM and the problem of distinguishing unobserved
anomalies, the permutation event modeling is used to
permutate original patterns for extending the training
set (Yang et al. 2019).

On the one hand, due to unknown delays (e.g., network
delay and disk I/O) and high concurrency of logs, the
actual arrival order of logs cannot be guaranteed in practical
scenarios. In fact, the temporal sequence of system logs
contains sufficient information which is significant for
detecting anomalies (Wang et al. 2018; Zeng et al. 2014).
However, LSTM is extremely sensitive to the temporal
order of logs within a pattern, in other words, LSTM tends
to consider the new permutation of an observed sample
as an unobserved sample. To overcome this limitation of
LSTM, we propose a permutation event modeling strategy.
Figure 4 shows a case’ to make readers easy to understand

3The case is selected from the training set and we adapt the case a bit to
explain all types of processing using the permutation event modeling.

the mechanism: (1) the subsequent events of the most
frequent pattern (i.e., the second pattern which appears 1+40
times in the training set) are considered as the baseline
subsequent events of permutation patterns; (2) for remaining
observed patterns (i.e., the first and third patterns), the
subsequent events of their permutation patterns consist
of the subsequent events of these observed patterns and
the difference between subsequent events of the most
frequent pattern and the observed pattern. For example,
the difference of (203,186,213) and (203,213,186) is 3 and
the difference of (203,186,213) and (186,203,213) is 349.
In this paper, we assume that the permutation of a given
log sequence will still result in a sequence that is not
an anomaly. Due to the imbalance between normal and
abnormal samples in most current large-scale systems, this
assumption is convincing in most cases.

On the other hand, anomalies are extremely sparse, and
detecting unobserved anomalies is more significant than
observed ones. However, the extended permutation patterns
contain abundant knowledge to distinguishing these unob-
served anomalies. Recently, Niven et al. show that the rea-
soning ability of neural networks is limited and models are
easy to be attacked by adversarial samples. The experimen-
tal results show that the performance of the model highly
depends on the quality of training sets (Niven and Kao
2019). Therefore, based on the permutation event modeling,
more meaningful samples are generated to provide models
with meaningful knowledge which is capable of improv-
ing the performance of detecting unobserved anomalies and
distinguishing unobserved normal events.

3.2.2 Negative Sampling

In practical scenarios, given a combination of events, the
possible upcoming events are sparse. In other words, the
real event vector (i.e., e;) is more like a one-hot or multi-
hot encoding vector which causes the overfitting problem.
Therefore, we exploit a negative sampling strategy to avoid
the overfitting problem (Chae et al. 2018). During the
G-steps, we randomly sample the unobserved instances
according to a specific ratio and set the corresponding
position of mask o, as 1 for retaining the gradients.

3.3 Anomaly Detection

After completing the train of LogGAN, generator G is
applied to detect anomalies based on the streaming events
from system logs. During the stage of anomaly detection:
(1) the historical and upcoming system logs are transformed
into structured data (i.e., event) via the log parser; (2)
the input of G is the combination of several latest events
(i.e., several one-hot encoding vectors) and G generates
a corresponding m—dimensional vector representing the

@ Springer

Inf Syst Front

Original Patterns & Subsequent Event

OOO® -

x1
‘ Permutation

Event Modeling

O Contextual Pattern

Fig.4 The mechanism of permutation event modeling

independent occurring probability of each event; (3) a
set of normal events is built based on the generated
m—dimensional vector filtered using a predefined threshold
of normal probability in the step 2; (4) the upcoming event
is considered as a normal instance if the event has an
intersection with the set of normal events, otherwise, the
event will be alerted as an anomaly.

4 Experiment

In this section, we propose the experiments to evaluate the
effectiveness of LogGAN on two real-world datasets, and
mainly concentrate on the following issues:

— Parameter: We analyze the effect of different parame-
ters on the performance of LogGAN.

— Session-level Anomaly Detection: The performance of
LogGAN on the task of session-level anomaly detection
is compared to that of baselines.

— Log-level Anomaly Detection: The performance of
LogGAN on the task of log-level anomaly detection is
compared to the performance of DeepLog.

4.1 Experimental Setup

Datasets: Generally, up-to-date system logs are rarely
published and are sensitive data that describe the detailed
information (i.e., business and transaction) about deployed
large scale systems, however, the data collected from own
small scale system hardly show the actual anomalies in
practical scenarios. Therefore, we exploit two real-world
datasets (i.e., HDFD and BGL*) collected several years

“https://github.com/logpai/loghub

@ Springer

Training Set after Permutation

ago which is published for research (Zhu et al. 2018).
HDEFS is collected from Amazon EC2 platform where
11,197,705 system logs are divided into 575,139 sessions
and generated by 203 nodes during two days while BGL
contains 4,747,963 logs collected from the BlueGene/L
supercomputer system during 215 days. The detailed
information of datasets is shown in Table 1. In addition,
because we are concerned with the reasoning ability of
proposed LogGAN on the log-level anomaly detection
under different sizes of sliding window, the ratio of observed
and unobserved types of samples in the temporal training
(30%) and testing (70%) set of BGL is shown in Table 2.

Baselines: In the experiments, to evaluate the perfor-
mance of our proposed approach, we compare LogGAN
with several selected baselines:

— iForest (Liu et al. 2008): is an unsupervised tree-based
isolation forest which tries to isolate anomalies from
other normal instances, especially for the imbalanced
training set.

— PCA (Wei et al. 2009): is an unsupervised principal
component analysis-based anomaly detection technique
which improves the parser of unstructured systems
and visualizes the promising diagnosis of abnormal
instances.

— Invariants Mining (Lou et al. 2010): is an unsupervised
anomaly detection technique applied to build the
structured logs based on the unstructured description in
console logs.

— LogCluster (Lin et al. 2016): is an unsupervised cluster-
based approach to clustering events extracted from the
historical and upcoming logs based on the knowledge
base.

— DeepLog (Min et al. 2017): is a supervised LSTM-
based deep learning framework which utilizes LSTM to

https://github.com/logpai/loghub

Inf Syst Front

Table 1 The overview of two real-world datasets

System Start Date Days Size(GB) Rate(log/sec) Messages Alerts Signatures
HDFS 2008-11-09 2 1.490G 64.802 11,197,705 16,916/575,139 29
BGL 2005-06-03 215 0.708G 0.256 4,747,963 348,698 394

fit the distribution of normal instances using the log key
and the performance value vector extracted from each
log. DeepLog, which provides an end-to-end anomaly
detection solution, is a representative log-level baseline
for the deep learning algorithms. In addition, the orig-
inal version of DeepLog (i.e., the semi-supervised
model) exploits misclassified samples to online update
the model for improving the performance of detecting
upcoming anomalies where the misclassified samples
are labeled by administrators manually. To compare the
performance of models, in the experiments, we train
DeepLog on the same training set used to train Log-
GAN and prevent the intervention of administrators.

In the experiments, we exploit the first 30% of dataset
as the training set while the remaining data as the test set
based on time series. In addition, we will briefly introduce
the key parameters of LogGAN for the reproduction of our
model. The size of sliding window determines the capacity
of contextual events to the upcoming log. The larger size
demonstrates the more specific contextual patterns are
used to identify anomalies while the smaller size means
upcoming anomalies are determined by the latest events
(i.e., the more regular contextual patterns). The event
embedding is used to represent events in the continuous
space. In this paper, we utilize the 2-size, 3-size, and 4-size
sliding window to extracting contextual pattern of upcoming
logs. To distinguish normal and abnormal events from
the output of generator (i.e., an m—dimensional vector),
we define a threshold to filtering normal logs. When the
occurring probability of a event is below the predefined
threshold, the event is considered as an anomaly based on
the contextual pattern. In addition, we define the threshold

as 0.90 which means the upcoming log is normal if the
appearing probability of the log is 90% based on the
output of generator. The ratio of negative sampling is set
as 0.1. The 2-layer LSTM is applied as the basic model of
generator and discriminator in LogGAN. The dimension of
event embedding is set as 200. To keep the correspondence
with DeepLog, in the experiments, we define the accurate
identification of true anomalies as the true positive.

4.2 Result and Discussion
4.2.1 Parameters

In this section, to focus on the performance of independent
LSTM-based GAN within different settings of parameters,
we concentrate on the task of log-level anomaly detection
without the permutation event modeling. Figure 5 illustrates
the performance of LogGAN, including the size of the
sliding window, the threshold to filtering normal logs, and
the layer of LSTM.

First, Fig. 5a shows the performance of LogGAN on
different sizes of the sliding window (i.e., size 1 to
5). Observed from Fig. 5a, abnormal logs are correlated
with the appropriate context of events (i.e., 4-size sliding
window). Compared the performance of 1-size and 4-size
windows, the performance of recall and precision indicates
that the 1-size window tends to consider normal events
as anomalies while the 4-size window has a better overall
performance without the permutation event modeling. As
shown in Table 2, normal events are overwhelmingly more
than abnormal events. LogGAN using the setting of a 4-
size window has the failure of detecting several anomalies
(i.e., Recall), however, LogGAN has great improvement

Table 2 The observed and

unobserved types of samples in Window Size Dataset Observation Normal Events Abnormal Events Total
training and testing set of BGL
2 Training Observed 2,237 176 2,143
Testing Observed 1,084 37 1,121
Unobserved 3,114 369 3,483
3 Training Observed 4,190 293 4,483
Testing Observed 1,890 40 1,930
Unobserved 6,244 617 6,861
4 Training Observed 6,840 457 7,297
Testing Observed 2,942 45 2,987
Unobserved 11,055 917 11,972

@ Springer

Inf Syst Front

F1-score TPN

Recall

Precision

(a) Size of sliding window

1
0.9 mO0.9
0.8 mo.7
0.7 = 0.5
0.6 0.3
05 m0.1
04
03
0.2
0.1
0
Precision Recall F1-score TPN
(b) Threshold to filtering normal logs
1
0.9
08 | "1
07 | ®?
06 | ®3
0.5
0.4
0.3
0.2
0.1
0
Precision Recall F1-score TPN

(c) Layer of LSTM

Fig. 5 The performance of LogGAN within different settings of
parameters

on distinguishing a large number of normal events (i.e.,
Precision).

Second, Fig. 5b illustrates the performance on different
settings of threshold to filtering normal logs. Note that
LogGAN on each threshold has good performance, in other
words, the proposed model is capable of distinguishing
between normal and abnormal events. In addition, there
is a significant decline (e.g., Recall) on the overall
performance if the threshold is decreased from 0.7 to 0.5.

@ Springer

This result means the probability of some normal and
abnormal events is around 0.6, in other words, the proposed
model still cannot distinguish these obscure events. Finally,
Figure 5c shows the performance of LogGAN using
different layers of LSTM in the generator and discriminator.
The experimental results demonstrate that appropriately
using deep features (i.e., 2-layer LSTM) is capable of
improving the performance of detecting anomalies.

4.2.2 Session-level Anomaly Detection

Table 3 shows the performance of baselines and LogGAN
on HDFS dataset. Different from the version of LogGAN
used in the log-level anomaly detection, we propose a
session-level version of LogGAN (LogGAN-sess) in the
session-level task. The generator of LogGAN-sess aims
to match a 30—dimensional vector where the first 29
dimensions record the number of corresponding events
appeared in the current session, and the last one represents
the abnormal score instead of fitting an m—dimensional
vector. The experimental results show that LogGAN-sess
outperform other baselines except for LogClustering. The
limitation of current LogGAN-sess is the model only
exploits the statistics of independent event that occurred
in the session. However, the traditional anomaly detection
methods concentrate on the concurrence of several events
in the temporal sequence. In addition, the structure of
workflows is also significant information which describes
the normal and integrated transactions in the system.
Therefore, the performance of LogGAN-sess could be
further improved using the statistics of specific patterns (i.e.,
the combination of temporal logs).

4.2.3 Log-level Anomaly Detection

Table 4 shows the comparison between DeepLog and
LogGAN on the log-level anomaly detection. The over-
all performance of LogGAN outperforms the performance
of DeepLog. In this section, we will discuss the experi-
mental results from three aspects: (1) the effectiveness of
permutation event modeling; (2) the impact of the size of

Table 3 The comparison between baselines and LogGAN on session-
level anomaly detection on HDFS

Method Recall Precision F1-score
Invariants Miner 1.000 0.084 0.154
PCA 0.346 0.707 0.465
DeepLog 0.016 0.939 0.032
iForest 0.318 1.000 0.482
LogClustering 0.362 1.000 0.532
LogGAN-sess 0.356 1.000 0.525

Inf Syst Front

PAAISqQ) J0J PAJBIAAIQQE ST SqQ),

$66°0 6860 666°0 $66°0 ¥86°0 6660 8260 8960 926°0 000°T 000°T 000°1 4
7660 160 6860 L66°0 6L6°0 6660 000°T S66°0 000°T $66°0 9L6°0 L66°0 €
L66°0 166°0 666°0 166°0 €260 6660 8660 7660 000°T 000°T 7660 000°1 4 NdL
00L0 $29°0 6960 0990 ¥19°0 G8L0 v1€0 910 TIro 60€°0 11%°0 961°0 4
8450 LSY0 8860 LYS0 09%°0 6860 88€°0 1240 78€°0 LLEO 16¥°0 Y0€°0 €
L99°0 €850 ¥86°0 0SS0 0S¥°0 €56°0 6£€°0 8 40] €€T0 0820 90¥°0 910 T 21008-1
9L6°0 6960 7660 9L6°0 6960 7660 16L°0 7660 LIEO 000°T 000°1 000°1 v
9960 LS60 L860 9860 9860 L860 6660 000°T 8660 L86°0 $66°0 SL60 €
£86°0 986°0 786°0 196°0 0S6°0 9860 L66°0 6660 L66°0 000°1 000'1 6660 4 JILAEN
9150 09%°0 8%6°0 6670 670 899°0 961°0 €970 8900 €81°0 8570 601°0 v
€8€°0 00€°0 6860 6LE0 00€°0 €860 740 L9T0 961°0 €€T0 9970 081°0 €
S0S°0 14840] 9860 G8¢°0 S6T°0 €260 Y020 0920 SET0 €91°0 SST0 680°0 T UoISIOAI
nv sqoun $90 nv sqoun sq0 nv sqoun sq0 nv sqoun 340
NVD30T] WAd-NVDS0T] NAd+So1desq Sopdesq
POYIRIN MOPUIA SLIRN

uondJIp Afewoue [9A9[-30] uo NyDH30T pue SoTdeoq usamiaq uostredwod ayJ, ¢ a|qeL

pringer

Qs

Inf Syst Front

sliding window; (3) the reasoning ability of models; (4) the
performance on combinations of techniques.

Effectiveness of PEM To evaluate the effectiveness of per-
mutation event modeling, we propose DeepLog+PEM (i.e.,
DeepLog with PEM) and LogGAN-PEM (i.e., LogGAN
without PEM). On the one hand, compared DeepLog with
DeepLog+PEM, the performance of DeepLog+PEM out-
performs that of DeepLog on the 2-size and 3-size sliding
window. however, the performance becomes worse on the 4-
size sliding window. DeepLog is an LSTM-based anomaly
detection method that is trained using every pattern in the
training set. In other words, there exist a large number of
duplicate samples (especially for normal events) where the
permutation samples generated by PEM are assumed to
appear once. Therefore, PEM is capable of improving the
performance of DeepLog, however, the overall results are
not satisfactory. On the other hand, compared LogGAN-
PEM with LogGAN, the overall performance of LogGAN
has a significant improvement, especially on Precision. Note
that LogGAN effectively improves the performance of dis-
tinguishing normal events (i.e., Precision) while maintain-
ing the performance of detecting anomalies (i.e., Recall).
In other words, LogGAN effectively reduces the false
alarm rate (i.e., an actual normal event is considered as
an anomaly). Therefore, PEM is capable of mitigating the
strong sequential dependency of LSTM and improving the
performance of LSTM-based models.

Impact of the size of sliding window To understand the
impact of the size of the sliding window (i.e., length of
pattern), we evaluate the performance of DeepLog and
LogGAN within different settings on 2-size, 3-size, and 4-
size sliding windows. Note that, the 3-size-sliding-window
model produces the best performance of DeepLog while
the 2-size and 4-size-sliding-window model produce the
best performance of LogGAN. The experimental results
show that the best choice of pattern length is based on
the mechanism of models. DeepLog and LogGAN exploit
different strategies for determining whether the upcoming
event is normal or abnormal. Therefore, it is important
to select the appropriate length of the pattern in practical
scenarios.

Reasoning ability of models The reasoning ability of mod-
els is the most significant problem we are concerned about
because the majority of anomalies are unobserved. The
performance on unobserved samples directly determines
the effectiveness and practicability of proposed models. To
evaluate the reasoning ability of proposed models, we divide
the testing set into the observed and the unobserved part.
Table 4 shows the performance of DeepLog and LogGAN
on the observed and unobserved sets. On the one hand, the

@ Springer

performance of DeepLog on the unobserved set is better
than that on the observed set. This phenomenon cannot indi-
cate that the reasoning ability of DeepLog is great. The poor
performance of DeepLog on the observed set presents that
DeepLog is not well trained using the training data. On the
other hand, LogGAN has better performance on the unob-
served set than DeepLog while the performance of LogGAN
on the observed set is significant. The experimental results
show the great reasoning ability of LogGAN.

Performance on combinations of techniques In this paper,
we exploit several components to improve the performance
of LogGAN: (1) Observed Mask (OM); (2) Permutation
Event Modeling (PEM); (3) Negative Sampling (NS).
Table 5 shows the performance on different combinations
of techniques using the 4-size-sliding-window LogGAN
where ‘-> and ‘O’ represents the technique is used or
not used, respectively. NS cannot be applied without
OM, thus, the independent performance of NS is not
listed. There are some interesting results. First, both OM
and PEM can improve the performance by only 2-3%,
however, the combination of OM and PEM has a great
improvement of about 11%. Second, the combination of
OM and NS is effective in reducing the false alarm rate
(i.e., improve 27% on Precision), however, the performance
of detecting anomalies is also decreased. Third, combining
PEM with OM and NS can further reduce the false
alarm rate while maintaining the performance of detecting
anomalies. Therefore, if the practical scenario has a low
tolerance for considering an anomaly as a normal event, the
combination of OM and PEM is a good choice. Otherwise,
the combination of OM, PEM, and NS is a better choice.
However, there still exist some limitations of LogGAN
in practical scenarios. First, observed from Table 5, Recall
decreased from 1 to 0.976, while Precision increased
from 0.223 to 0.546 due to the supplement of techniques.
In practical use, if Recall cannot reach 1 (i.e., a
few anomalies would be classified as normal events),
misclassified anomalies may bring crucial failures to the

Table 5 The performance of different combinations of techniques in
BGL

Techniques Precision Recall F1-score TPN
oM PEM NS

- - - 0.223 1.000 0.365 1.000
o - - 0.249 1.000 0.399 1.000
- o - 0.258 1.000 0.410 1.000
o o - 0.330 0.995 0.495 0.999
o - o 0.499 0.976 0.660 0.995
o o o 0.546 0.976 0.700 0.995

Inf Syst Front

software system, which cannot be tolerant for stability.
Therefore, the technique of negative sampling is not
recommended in practical scenarios. Yan et al. proposed
a unified cost-sensitive framework for automated malware
(i.e., anomaly) classification which maximizes the detection
rate while maintaining the false positive rate under a certain
threshold (Yan 2015). This approach will further promote
the performance of anomaly detection in practical uses.
Second, observed from Table 4, Precision on observed
samples is beyond 0.9 while Precision on unobserved
samples is below 0.5. In addition, normal events are much
more than anomalies in any software system. In other words,
although Precision is as high as 50%, many normal events
are considered as anomalies based on the classification of
LogGAN. Therefore, LogGAN is still limited in practical
use (i.e., detecting unobserved or unknown anomalies).
Third, the performance of LogGAN on the session-level
anomaly detection is weak. Although the logs (i.e., events)
are temporal in each session (i.e., block) of HDFS, the
capacity of a session (i.e., the number of logs) is from
tens to hundreds and is unfixed. LogGAN is an LSTM-
based deep learning approach that is weak for fitting the
variable-length and long sequence. Therefore, observed
from Table 3, Precision of LogGAN reaches 1 while Recall
is low, in other words, LogGAN tends to consider session-
level anomalies as normal sessions due to the imbalance
between normal and abnormal sessions. That is the reason
why the performance of LogGAN is weak in the session-
level anomaly detection.

5 Conclusion

To overcome the limitation of diagnosing log-level anomaly
detection, in this paper, we propose a sequence-based
generative adversarial network to detecting abnormal events
among system logs named LogGAN. In practical scenarios,
we consider that the occurring anomalies depend on specific
patterns which comprise the latest logs and regard specific
patterns as the contextual information of upcoming logs.
Due to the benefit of the generative adversarial network,
the problem of the imbalance between normal and abnormal
logs is relieved where LogGAN is capable of generating
‘real’ anomalies for supplying the lack of abnormal logs
in system logs. In addition, LogGAN can be transformed
into the session version only to changing the representation
of samples without reforming the overall structure of
LogGAN. The experimental results show the effectiveness
of LogGAN on both the tasks of session-level and log-level
anomaly detection.

The current LogGAN still has some problems that need
to be solved for further improvement, and there exist
several ideas to extend our work in the future. First, the

current LogGAN has similar structures of discriminator
and generator, and we exploit the generator to distinguish
anomalies from system logs. Can the combination of
outputs from discriminator and generator be used to identify
anomalies? Second, only the signature and the temporal
information of system logs are used to train LogGAN
in this paper. The parameter of each event and other
meaningful feature need to be considered to precisely
describe anomalies. Third, the diagnosis of anomalies is
also an important task which helps administrators solve
anomalies efficiently. Therefore, the root cause analysis
(RCA) should be considered in the process of detecting
anomalies.

Acknowledgment This work was supported by the National Natural
Science Foundation of China under Grant No.61802205, 61872186,
and 61772284, the Natural Science Research Project of Jiangsu
Province under Grant 18KJB520037, and the research funds of NJUPT
under Grant NY218116.

References

Bodik, P., Goldszmidt, M., Fox, A., Woodard, D.B., Andersen, H.
(2010). Fingerprinting the datacenter: automated classification
of performance crises. In inproceedings of the 5th european
conference on computer systems (pp. 111-124): ACM.

Chae, D.-K., Kang, J.-S., Kim, S.-W., Lee, J.-T. (2018). Cfgan: A
generic collaborative filtering framework based on generative
adversarial networks. In Inproceedings of the 27th ACM Interna-
tional Conference on Information and Knowledge Management
(pp. 137-146): ACM.

Chandola, V., Banerjee, A., Kumar, V. (2009). Anomaly detection: a
survey. ACM computing surveys (CSUR), 41(3), 15.

Chawla, S., & Sun, P. (2006). Slom: a new measure for local
spatial outliers. Knowledge and Information Systems, 9(4), 412—
429.

Chen, M., Zheng, A.X., Lloyd, J., Jordan, M.L., Brewer, E. (2004).
Failure diagnosis using decision trees. In International Conference
on Autonomic Computing, 2004. Proceedings (pp. 36—43): 1EEE.

Min, D., Li, E,, Zheng, G., Srikumar, V. (2017). Deeplog: Anomaly
detection and diagnosis from system logs through deep learning.
In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (pp. 1285-1298): ACM.

Goodfellow, 1.J., Pouget-Abadie, J., Mirza, M., Bing, X., Warde-
Farley, D., Ozair, S., Courville, A.C., Bengio, Y. (2014).
Generative adversarial nets. In Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal,
Quebec, Canada (pp. 2672-2680).

Guo, S., Liu, Z., Chen, W., Li, T. (2018). Event extraction from
streaming system logs. In Information Science and Applications
2018 - ICISA 2018, Hong Kong, China, June 25-27th, 2018
(pp- 465-474).

Huang, S.Y., Lin, C.-C., Chiu, A.-A., Yes, D.C. (2017). Fraud detection
using fraud triangle risk factors. Inf. Sys. Frontiers, 19(6), 1343~
1356.

Li, T., Zeng, C., Zhou, W., Xue, W., Huang, Y., Liu, Z., Zhou, Q., Xia,
B., Wang, Q., Wang, W, et al. (2017). Fiu-miner (a fast, integrated,
and user-friendly system for data mining) and its applications.
Knowledge and Information Systems, 52(2), 411-443.

@ Springer

Inf Syst Front

Liang, Y., Zhang, Y., Xiong, H., Sahoo, R. (2007). Failure prediction
in ibm bluegene/l event logs. In Seventh IEEE International
Conference on Data Mining (ICDM 2007) (pp. 583-588): IEEE.

Lin, Q., Zhang, H., Lou, J.-G., Zhang, Y., Chen, X. (2016). Log
clustering based problem identification for online service systems.
In Proceedings of the 38th International Conference on Software
Engineering Companion (pp. 102-111): ACM.

Liu, ET.,, Ting, K.M., Zhou, Z.-H. (2008). Isolation forest. In 2008
Eighth IEEE International Conference on Data Mining (pp. 413—
422): 1EEE.

Lou, J.-G., Qiang, F., Yang, S., Ye, X., Li, J. (2010). Mining invariants
from console logs for system problem detection. In USENIX
Annual Technical Conference (pp. 1-14).

Mondal, T., Pramanik, P., Bhattacharya, I., Boral, N., Ghosh, S. (2018).
Analysis and early detection of rumors in a post disaster scenario.
Inf. Syst. Frontiers, 20(5), 961-979.

Niven, T., & Kao, H.-Y. (2019). Probing neural network comprehen-
sion of natural language arguments. In Proceedings of the 57th
Conference of the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long
Papers (pp. 4658—-4664).

Sun, P., & Chawla, S. (2004). On local spatial outliers. Fourth IEEE
International Conference on Data Mining (ICDM’04) (pp. 209—
216): IEEE.

Tang, L., Li, T., Perng, C.-S. (2011). Logsig: generating system
events from raw textual logs. In Proceedings of the 20th
ACM International Conference on Information and Knowledge
Management (pp. 785-794): ACM.

Troudi, A., Zayani, C.A., Jamoussi, S., Amor, .LA.B. (2018). A new
mashup based method for event detection from social media. Inf.
Syst Frontiers, 20(5), 981-992.

Tuor, A.R., Baerwolf, R., Knowles, N., Hutchinson, B., Nichols, N.,
Jasper, R. (2018). Recurrent neural network language models
for open vocabulary event-level cyber anomaly detection. In
Workshops at the Thirty-Second AAAI Conference on Artificial
Intelligence.

Wang, J., Lantao, Y., Zhang, W., Gong, Y., Yinghui, X., Wang, B.,
Zhang, P., Zhang, D. (2017). Irgan: A minimax game for unifying
generative and discriminative information retrieval models. In
Proceedings of the 40th International ACM SIGIR conference on
Research and Development in Information Retrieval (pp. 515—
524): ACM.

Wang, W., Zeng, C., Li, T. (2018). Discovering multiple time lags
of temporal dependencies from fluctuating events. In Web and
Big Data - Second International Joint Conference, APWeb-WAIM
2018, Macau, China, July 23-25, 2018, Proceedings, Part Il
(pp. 121-137).

Xia, B., Yin, J,, Jian, X., Li, Y. (2019). Loggan: A sequence-based
generative adversarial network for anomaly detection based on
system logs. In Liu, F.,, Xu, J., Xu, S., Yung, M. (Eds.) Science of
Cyber Security - Second International Conference, Scisec 2019,
Nanjing, China, August 9-11, 2019, Revised Selected Papers,
Volume 11933 of Lecture Notes in Computer Science (pp. 61-76):
Springer.

Jian, X., Jiang, Y., Zeng, C., Li, T. (2015). Node anomaly detection
for homogeneous distributed environments. Expert Syst. Appl.,
42(20), 7012-7025.

Jian, X., Tang, L., Li, T. (2016). System situation ticket identification
using svms ensemble. Expert Syst. Appl., 60, 130-140.

Jian, X., Tang, L., Zeng, C., Li, T. (2016). Pattern discovery via
constraint programming. Knowl.-Based Syst., 94, 23-32.

Wei, X., Huang, L., Fox, A., Patterson, D., Jordan, M.I. (2009).
Detecting large-scale system problems by mining console logs. In
Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles (pp. 117-132): ACM.

@ Springer

Yan, G. (2015). Be sensitive to your errors: Chaining neyman-pearson
criteria for automated malware classification. In Bao, F., Miller,
S., Zhou, J., Ahn, G.-J. (Eds.) Proceedings of the 10th ACM
Symposium on Information, Computer and Communications
Security, ASIA CCS 15, Singapore, April 14-17, 2015 (pp. 121-
132): ACM.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J.G., Salakhutdinov, R., Le,
Q.V. (2019). Xlnet: Generalized autoregressive pretraining for
language understanding. CoRR abs/1906.08237.

Zeng, C., Tang, L., Li, T., Shwartz, L., Grabarnik, G. (2014). Mining
temporal lag from fluctuating events for correlation and root cause
analysis. In /0th International Conference on Network and Service
Management, CNSM 2014 and Workshop, Rio de Janeiro, Brazil,
November 17-21, 2014 (pp. 19-27).

Ji, Z., & Wang, H. (2006). Detecting outlying subspaces for high-
dimensional data: the new task, algorithms, and performance.
Knowledge and information systems, 10(3), 333-355.

Zhu, J., He, S., Liu, J., He, P, Qi, X., Zheng, Z., Lyu, M.R.
(2018). Tools and benchmarks for automated log parsing. CoRR
abs/1811.03509.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Bin Xia received the PhD degree in Computer Science from Nanjing
University of Science and Technology, in 2018. Currently, he is
current an assistant professor with the School of Computer Science
and Technology, Nanjing University of Posts and Telecommunications
(NJUPT). His research interests include recommender system, Al for
IT Operations, and deep learning.

Yuxuan Bai was born in 1995. He received a bachelor’s degree from
Nanjing University of Posts and Telecommunications in 2018. He is
now a second-year graduate student at Nanjing University of Posts
and Telecommunications. His current research direction is Nature
Language Processing and Data Mining.He is a member of the Jiangsu
Key Laboratory of Big Data Security and Intelligent Processing.

Junjie Yin was born in 1994. He received his master degree from
Nanjing University of Posts and Telecommunications in 2020. He is
now a senior engineer at Zhongxing Telecommunication Equipment
Corporation. His current research directions are recommend system
and deep learning.

Yun Li received the Ph.D. degree in computer science from Chongqing
University, Chongqing, China. He was a Post-Doctoral Fellow with
the Department of Computer Science and Engineering, Shanghai
Jiao Tong University, Shanghai, China. He is a Professor with the
College of Computer Science, Nanjing University of Posts and
Telecommunications, Nanjing, China. His current research interests
include machine learning, data mining, and parallel computing. Dr.
Yun Li is a senior member of CCF, JSAI and member of IEEE.

Jian Xu received a Ph.D. in Computer Science in 2007 from Nanjing
University of Science and Technology, Nanjing, China. Now he
holds the position of a professor at Nanjing University of Science
and Technology. His research interests are event mining, log mining
and their applications to complex system management, and he
has published about 30 papers in journals and refereed conference
proceedings in those areas.

	LogGAN: a Log-level Generative Adversarial Network for Anomaly Detection using Permutation Event Modeling
	Abstract
	Introduction
	Related Work
	Supervised Anomaly Detection
	Semi-supervised Anomaly Detection
	Unsupervised Anomaly Detection

	Method
	Log Parser
	Adversarial Learning
	Permutation Event Modeling (PEM)
	Negative Sampling

	Anomaly Detection

	Experiment
	Experimental Setup
	Result and Discussion
	Parameters
	Session-level Anomaly Detection
	Log-level Anomaly Detection
	Effectiveness of PEM
	Impact of the size of sliding window
	Reasoning ability of models
	Performance on combinations of techniques

	Conclusion
	References

