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Abstract: The rapid development of location-based social networks (LBSNs) produces the increasing
number of check-in records and corresponding heterogeneous information which bring big
challenges of points-of-interest (POIs) recommendation in our daily lives. The emergence of various
recommender techniques bridges the gap between the numerous heterogeneous check-ins and the
personalized POI recommendation. However, due to the differences between LBSNs and conventional
recommendation tasks, besides the user feedback, the spatio-temporal information is also significant
to precisely capture the user preferences. In this paper, we propose a multi-task learning model
based POI recommender system which exploits a structure of generative adversarial networks (GAN)
simultaneously considering temporal check-ins and geographical locations. The GAN-based model
is capable of relieving the sparsity of check-in data in POI recommender systems. The temporal
check-ins not only present the preference but also show the lifestyle of an individual while the
geographical locations describe the active region of users which further filters POIs far from
the feasible region. The multi-task learning strategy is capable of combining the information
of temporal check-ins and geographical locations to improve the performance of personalized
POI recommendation. We conduct the experiments on two real-world LBSNs datasets and the
experimental results show the effectiveness of our proposed approach.

Keywords: recommender systems; sequential analysis; attention; generative adversarial networks

1. Introduction

The evolution of mobile phones and wearable devices facilitates the development of
location-based social networks (LBSNs), which bridges the gap between the virtual cyberspace and
the physical world. LBSNs, such as Foursquare and Gowalla, provide detailed information on massive
POIs in our physical world, and users can share their check-in experience based on reviews (e.g., texts
and photographs) in the virtual cyberspace. To improve the user satisfaction, the point-of-interest
(POI) recommendation is proposed to capture the user preferences based on sufficient information
(e.g., check-ins and ratings) and push potential desired POIs to individuals. Therefore, the research of
POI recommender systems becomes increasingly popular, and researchers make many efforts on the
effectiveness and efficiency of POI recommendation [1–3].

However, the characteristics of location-based social networks also bring significant challenges to
current techniques of recommender systems. First, different from the explicit feedback (i.e., ratings)
in traditional recommender systems (i.e., books and movies), the check-in records in LBSNs are the

Appl. Sci. 2020, 10, 6664; doi:10.3390/app10196664 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-9519-6517
http://dx.doi.org/10.3390/app10196664
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/19/6664?type=check_update&version=2


Appl. Sci. 2020, 10, 6664 2 of 18

implicit feedback that reflect the user preferences. In other words, high ratings mean definite user
preferences to a specific item; however, the amount of check-ins is not relevant to user preferences.
Second, although check-in records are much more than ratings due to the characteristics of user
behaviors in LBSNs, check-in data is still extremely sparse, which may cause a cold-start problem
and make it difficult for models to capture user preferences. Third, it is necessary to simultaneously
consider the user preference and geographical influence in POI recommendations, which should be a
multi-objective optimization to balancing the trade-off between the user preference and the physical
distance. Therefore, there still exist some exciting and challenging tasks that should be resolved in POI
recommender systems.

To overcome the challenges mentioned above, many researchers have made lots of efforts on
POI recommendations based on innovative techniques. Xia et al. proposed a strategy for relaxing the
count of check-ins to several labels distinguishing user preferences and built a classification model for
recommending POIs to individuals [4]. Although the problem of implicit feedback is relieved based on
the relaxation of preference representation, the extreme situation (e.g., a favorite POI has been visited
only once) cannot be considered. To this end, they also proposed an attention-based recurrent neural
network for concentrating on the sequential check-in behavior to further relieve the problem of implicit
feedback instead of focusing on the count of check-ins on a specific POI [5]. However, due to the sparsity
of check-ins, the proposed model in [5] is hard to recommend for POIs that the user has never been to.
In addition, there exists much deep learning research applied to the mechanism of word embedding for
representing each POI using a continuous vector simultaneously considering the sequential check-ins
and the characteristics of POI to improve the performance of POI recommendation [6,7]. However,
the sparsity of check-in records also makes these deep learning models challenging for capturing the
relevance among massive POIs and users.Therefore, it is significant to relieve the influence of sparse
check-in data on the effectiveness of POI recommendations.

To this end, in this paper, we propose a multi-task leaning based POI recommendation
simultaneously considering the temporal check-ins and the geographical locations. First, the proposed
framework exploits a generative adversarial network (GAN) that constructs an adversarial game
between a generator (G) and a discriminator (D). Based on the mechanism of adversarial learning,
G aims to fit the real data and learn the actual distribution of datasets while D tries to distinguish
whether the incoming sample is real or fake (i.e., generated by G). In other words, with the convergence
of GAN, the generator can synthesize plausible instances (i.e., check-in records), which is capable
of relieving the problem of sparse check-in data. Second, to capture user preferences from implicit
feedback, both G and D are designed based on long-short term memory networks (LSTM) capable of
mining important information from sequential check-in data instead of constructing a regression task
based on the count of check-ins. The personalized temporal check-ins not only present the preference
but also show the lifestyle of an individual. In other words, the context of visiting a specific POI is also
significant for demonstrating the user preference which can be captured using the recurrent neural
network based model. Third, the generator and the discriminator leverage the LSTM to construct
a multi-task learning model to fit the next check-in POI and the personalized visiting path based
on the longitude and latitude for considering the geographical influence. Due to the generative
adversarial network based framework, the extension of check-in records will relieve the problems
caused by implicit feedback while the multi-task setup can bring the geographical influence to the POI
recommendation. Our contribution can be summarized as below:

• A multi-task learning based GAN is proposed to overcome the limitation of sparse check-in
records to the performance of POI recommendations.

• The proposed approach leverages the sequential learning (i.e., POI and physical coordinate) to
relieve the problem of implicit feedback and geographical influence simultaneously.

• Extensive experiments are conducted to evaluate the effectiveness of our proposed framework
based on two real-world LBSN datasets.



Appl. Sci. 2020, 10, 6664 3 of 18

The rest of paper is organized as below: Section 2 introduces the significant work related to our
research. Section 3 describes our proposed model in detail. Section 4 shows the experimental results
on the two real-world datasets and analyze the comparison between the baselines and our proposed
model. Section 5 concludes this paper and shows the interesting future work related to our work.

2. Related Work

POI Recommendation: The difference between the problem of POI recommendation and the
recommendation of other types of items is that for the recommendation of POIs the geographical
location of the POIs becomes an essential part of the user preferences. Traditional recommender
systems (i.e., book recommendation) can provide every item that hits the user preference if the item
is not out of stock. However, when a user is looking for a place for dinner after watching a film,
it is ridiculous if a POI recommender system pushes a restaurant thousands of miles away from the
user ignoring the geographical influence. Therefore, simultaneously considering the geographical
influence and preference becomes a popular area that has attracted a lot of research attention. Feng et al.
proposed a personalized ranking metric embedding approach to integrating sequential check-ins,
preference, and geographical influence. Different from the self-learning POI embedding, the authors
utilized the metric embedding to representing each POI in a K-dimensional latent space and leveraged
the Euclidean distance to describing the potential transition within the following information [8]. In the
following research of Feng et al., they proposed a latent representation model POI2Vec inspired by
Word2Vec [6]. Instead of initializing embeddings using the Gaussian distribution, POI2Vec initializes
the POI vectors incorporating the geographical influence. Different from their previous work [8],
they utilized the relationship between the distance and visiting probability to further represent
the POI embeddings. A joint model is then proposed to combine the geographical influence with
the user preference and predict the potential visitors for a specific POI. However, in these works,
the geographical influence is considered as the physical distance among POIs. Wang et al. redefined
the geographical influence as the geo-influence of POI, the susceptibility of POI, and the physical
distance, where the geo-influence describes the capacity of POI and the susceptibility describes the
propensity of POI [9]. In other words, they do not only consider the physical distance between POIs as
the geographical influence but also consider the influence of visiting users. Although the research of
geographical influence improves the performance of current POI recommendations, the sparsity of
check-ins is also a big challenge where negative sampling can alleviate this issue effectively. Liu et al.
proposed geographical information based adversarial learning model named Geo-ALM, which utilized
a game setting to generate a few but critical negative samples (i.e., POIs that users have never been to)
for improving the effectiveness of POI recommendation [10]. Fu et al. focused on the geographical
influence and proposed a region embedding strategy considering the distance and mobility connectivity
using the multi-view learning model [11]. Sun et al. combined a nonlocal network for the long-term
preference and a geo-dilated recurrent neural network for the short-term preference to address the
bias of current techniques in the long-term or short-term preference [12]. Zhou et al. proposed a
general adversarial learning based POI recommender system which was inspired by IRGAN using
the technique of reinforcement learning to update the generator (i.e., recommender) [13]. Chang et al.
was the first attempt to utilize the content-aware embedding to address the problem of representing
the characteristics of POIs where the check-in layer and the content layer are combined to capture the
embedding of POIs [14]. Bobadilla et al. proposed a generic deep learning architecture to optimizing
the collaborative filtering recommender system which is also an effective solution in the task of the
POI recommendation [15]. Nguyen et al. also proposed a generic recommender system using the
cognitive similarity-based collaborative filtering technique which is capable of addressing the general
task of POI recommendation [16]. Compared to the current POI recommendation approaches, our
proposed model aims to address the sparsity of check-in records using the mechanism of adversarial
learning and taking the geographical influence into account for improving the effectiveness of user and
POI embeddings. In addition, the user’s preference is fluctuating according to the current situation
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(e.g., the current location and the previous check-in POI). Therefore, the mechanism of attention is
utilized to adjust the embedding based on the complex contextual information.

Generative Adversarial Networks: Due to the effectiveness of addressing various problems and
improving the performance of models, generative adversarial networks (GAN) have been attracting
a lot of research attention in recent years. The principle of GAN is to jointly train a generator and a
discriminator based on a game setting using the adversarial learning, and one or both of the generators
and the discriminator will be leveraged to complete proposed tasks [17]. The utilization of GAN in
the task of POI recommendation is limited, and Geo-ALM is a simple try to generate critical negative
samples using GAN [10]. However, GAN is a simple form of adversarial learning where the framework
of GAN is evolving with the development of machine learning models. GAN was proposed to address
the problems in the image processing domain due to the advantage of handling continuous data [17].
The goal of recommender systems is to push the items which hit the preference of users where the
items are discrete data. In other words, the gradient between discrete data cannot be calculated.
Therefore, traditional GAN cannot be leveraged in the domain of recommender systems. To this end,
Wang et al. proposed a GAN-based information retrieval model named IRGAN for transforming the
traditional gradient into the policy gradient based reinforcement learning [18]. Although IRGAN is
capable of generating recommendations (i.e., discrete data), the contradiction between real and fake
data will confuse the discriminator and restrict the performance of the generator. To alleviate this
problem, Chae et al. proposed a generic collaborative filtering framework based on GAN named
CFGAN, which discarded the softmax layer and transformed the output back to the continuous
form [19]. On the one hand, it can calculate the gradient of the continuous data simply. On the other
hand, GAN is designed to generate continuous data, which means GAN’s performance should be
improved. In addition, the goal of the generator is to learn the distribution of real data based on the
Kullback–Leibler divergence, which may cause the gradient vanishing and the gradient exploding.
To address this issue, Arjovsky et al. proposed the Wasserstein distance, which describes the difference
between distributions better than the Kullback–Leibler divergence [20]. Wang et al. proposed a
deep adversarial substructured learning framework to learning the representation of mobile user
profiling where the proposed framework maintained two components preserved the entire graph
and the sub graph of users [21]. Zhang et al. designed a spatial embedding strategy to unifying
the inter- and intra-region autocorrelations using a collective graph-regularized dual adversarial
learning framework [22]. In addition, Thanh-Tung et al. proposed a zero-centered gradient penalty for
improving the stability of GANs and the generalization of the discriminator by pushing it toward the
optimal discriminator [23].

Attention: The mechanism of attention, which was called memory networks at the beginning,
was proposed to address problems in the domain of natural language processing [24]. For example,
when we deal with the task of reading comprehension, we are more concerned about the key sentences,
even words to our questions than the irrelevant ones. However, the recurrent neural networks
(i.e., long-short term memory networks) consider that the latest words are more significant than any
other, and the convolutional neural networks treat each word fairly. Both of their mechanisms restrict
the further improvement of performance in similar tasks. To this end, Sukhbaatar et al. proposed an
end-to-end memory network with a recurrent attention model, which is an updated version of their
previous work [24] to address the task of question answering in the reading comprehension [25]. In the
end-to-end memory network, the external memory (i.e., the component of attention) is implemented
using a weight vector, which is the standard form of attention. Inspired by the end-to-end memory
networks, Xia et al. proposed an attention-based recurrent neural network, which exploited the external
memory for matching the user preference and historical check-in data considering the geographical
influence overcoming the problem of sequential POI recommendations [5]. However, the form of
attention is evolving with the improvement of deep learning theory. Vaswani et al. proposed a
generic transformer based solely on a self-attention mechanism and also introduced a new form of
attention named the multi-head attention, which was inspired by the multiple kernels in convolutional
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neural networks [26]. In addition, Tay et al. proposed a novel architecture using the densely
connected attention propagation for the reading comprehension, where the design of the bidirectional
attention connector was inspired by ResNet [27,28]. Liu et al. proposed a geographical-temporal
awareness hierarchical attention network to capture the subtle POI–POI interactions for improving
the performance of models only considering the sequential check-ins [29]. Although the attention
mechanisms are changing, the goal of attention is to guide models to concentrate on critical information
in data.

3. Methodology

To overcome the aforementioned limitations of current approaches, in this paper, we propose
a multi-task learning based POI recommender system simultaneously considering sequential
check-ins learning and geographical influence. Figure 1 illustrates the overview of our proposed
POI recommender system. The training and predicting process can be summarized as below:
(1) The historical check-in records are grouped by individuals where each personal check-in sequence is
described using POI ids; (2) The sliding window is applied to split the individual sequential check-ins
as real training samples for the train of GAN; (3) The features (i.e., user ID, temporal check-ins,
and geographical location) of each sample are extracted from the original dataset and integrated as
an input hub; (4) Based on the features in the input hub, an adversarial game is construed where the
LSTM-based generator generates fake check-in samples while the LSTM-based discriminator tries to
distinguish the real and fake samples; (5) the converged generator is capable of capturing the actual
user preferences and provides POI recommendations. In the following sections, we will introduce the
module of data preprocessing and generative adversarial networks in detail.

Generator
(LSTM)

Discriminator
(LSTM)
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19 12 16 2

19 12 16 2 21 8 …… 11
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Figure 1. The overview of the proposed GAN based POI recommender system.

3.1. Data Preprocessing

The goal of data preprocessing is to convert the original check-in records to the data, which can be
calculated using the machine learning technique. Although lots of useful features exist (e.g., category
and review of POI) in each check-in record, the crucial information including user ID, POI ID, check-in
timestamps, and location (i.e., latitude and longitude) is considered as the input features to the
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following modules. Similar to the majority of previous research, in this paper, the technique of
Word2Vec is applied to represent users and POIs using vectors that are capable of capturing the
differences among users and POIs [5]. Based on the mechanism of Word2Vec, each word which has
a unique id ranged from 0 to the number of words in the bag will be converted to a specific vector
according to the id. The vectors, which are the embeddings representing the corresponding words,
are usually initialized based on the Gaussian distribution and updated iteratively within the training
processing. Similar to Word2Vec, the users and POIs are given unique ids that link to the corresponding
embeddings (i.e., vectors) where the User/POI embeddings will be updated within the processing
of fitting individual sequential check-ins. In general, the vectors are stored in a matrix, and the line
number of the matrix is utilized to extract the corresponding vector (i.e., the representation of the
user or POI). Therefore, in this paper, each user or POI is labeled as a unique number starting from 0
instead of using a complex character string (e.g., 4c4f4d8d24edc9b62a5a77bb). The individual temporal
check-in records are described as a numerical sequence which is shown in Figure 1.

Due to the consideration of sequential check-ins and geographical influence, the temporal
check-ins and the related geographical location should be extracted from the original datasets. For the
influence of sequential check-ins, the timestamps are used to sort the corresponding check-in records
for constructing the individual sequential check-ins of each user instead of being an explicit feature
input to the model. Different from traditional recommender systems (i.e., book and movie), the next
POI visit is not only dependent on the user preference but also considering the latest visited POIs.
In other words, a user cannot visit multiple restaurants in a short time while it is normal for a user to go
shopping among several malls. Therefore, the visiting pattern (i.e., the latest temporal visited POIs) not
only describes the typical lifestyle but also represents individual preferences. To this end, the 1-stride
fixed-size sliding window is utilized to split the individual check-in sequences into independent
samples where the last POI of samples is the actual next visited POI. The previous POIs are considered
as a visiting pattern. These samples considered as the real training instances will be transformed to
the GAN. For the geographical influence, the distance between the last visited POI and the next POI
is also a significant reference for users to accept the recommendations. In other words, there exists a
trade-off between the distance and the user preference if the time is limited. Therefore, we consider
the latitude and longitude as a two-dimensional vector to capture the significance of distance and
preference to a specific user. In our previous work [30], we conduct experiments to show that, if the
POI embedding is updated without the geographical coordinate information, the POI embeddings
cannot be related to the geographical context. Therefore, the geographical influence is significant to
the performance of POI recommendations.

Based on the aforementioned steps, the output of data preprocessing can be categorized into
two parts: (1) the real training samples for the following adversarial learning; (2) the input of generator
and discriminator. For the input of generator and discriminator, the features of each sample are
integrated into an input hub which is a module to structuring data, including the user ID, temporal
check-ins (i.e., visiting pattern), and geographical locations to the corresponding POI.

3.2. Generative Adversarial Network

The generative adversarial network is the crucial module of our proposed POI recommender
system, where the goal of GAN is to relieve the sparsity of check-in data and improve the performance
of POI recommendations. To relieving the sparsity of check-in data, the generator is capable
of capturing the actual distribution of individual sequential check-in records and synthesizing
plausible samples, which can supplement training data. For improving the performance of POI
recommendations, compared to the single model, the adversarial learning between a generator and a
discriminator can further promote the generalization ability of each model and improve the overall
performance. In the following paragraphs, we will introduce the generator, the discriminator, and the
adversarial learning in detail.
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Generator: Figure 2 illustrates the structure of proposed generator in the framework where
the generator comprises an embedding layer, an attention layer, and an output layer. The input of
the generator consists of User ID, temporal check-ins, and geographical locations. The User ID is
used to obtain the embedding of a specific user. The temporal check-ins are a list of visited POI IDs
for the corresponding user using a three-size sliding window. The geographical locations are the
latitudes and longitudes of the corresponding POIs in the temporal check-ins. In detail, the embedding
layer is utilized to describe the set of users U = {u1, u2, . . . , um}, and represent the set of POIs
V = {v1, v2, . . . , vn} using the corresponding vectors where the embeddings describe the preferences
of users and the characteristics of POIs. Furthermore, an LSTM is leveraged to fold the sequential
check-ins Vui of user ui while another LSTM is used to fit the corresponding sequential geographical
locations Lui . Therefore, the output of the embedding layer is the embedding of a user (i.e., ui),
the latent feature of corresponding temporal check-ins hv, and the latent feature of corresponding
geographical location hl . The attention layer is leveraged to dynamically adjust the representation
of user embeddings based on the latest temporal check-ins and geographical locations. In general,
the user embedding ui is capable of describing the preference of i-th user based on her historical
check-ins. However, in POI recommender systems, the final choice of a user is not only dependent on
the preference but also relevant to the previously visited POI and the current geographical location.
In addition, the preference is more specific to a user than the sequential check-ins and geographical
locations. Therefore, instead of concatenating the user embedding and the latent features of temporal
check-ins and geographical influence (i.e., contextual information), we utilize the latent features
of contextual information to calculate the parameter of attention vector to finely tuning the user
embedding that is capable of describing the actual preference based on the contexts. The output of the
attention layer is based on the following equation:

oa = so f tmax([hv, hl ]× wa + ba)× ui. (1)

The output layer (i.e., a fully connected layer) is leveraged to transform the latent features of the
previous layer into meaningful outputs. In the proposed generator, the multi-task strategy is used to
improve the performance of fitting actual distribution of observed check-in data. Besides the predicted
check-in vector, which is calculated based on a two-fully-connected layer, the next POI location is
predicted based on a two-fully-connected layer and the latent feature of geographical location hl .
The predicted check-in vector and the next POI location can be calculated based on the following
equations, respectively:

oc = so f tmax(ReLU(oa × wc1 + bc1)× wc2 + bc2), (2)

ol = sigmoid(ReLU(hl × wl1 + bl1)× wl2 + bl2), (3)

where oc is considered as a fake check-in preference (i.e., a fake sample) for the user ui according to the
current temporal check-ins and geographical location.

Discriminator: Figure 3 illustrates the proposed discriminator in the framework where the
discriminator also comprises an embedding layer, an attention layer, and an output layer. Similar to the
structure of the proposed generator, the discriminator also exploits the user ID, the temporal check-ins,
and the geographical location to generate the dynamical user preference (i.e., an embedding vector)
based on the latest historical check-in records. However, the goal of the discriminator is to distinguish
the real samples (i.e., actual check-in records) and the fake samples (i.e., predicted check-in vectors)
for helping the generator improve the performance of capturing the actual user preference based on
the contextual information. Therefore, besides the user ID, the temporal check-ins, the geographical
location, and the check-in vectors, including the actual records and the generated ones, are transformed
into a latent vector using a fully connected layer in the embedding layer. The transformed vector, which
has the same dimension with the dynamical user preference, represents the user preference based on
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the current check-in vector. In the attention layer, the generated and transformed user preferences are
concatenated into a long vector, which is considered as the output of the attention layer. For the output
layer, the discriminator transforms the output of attention layer into a single value where the value is
equal to 0 if the generator produces the check-in vector while the value is equal to 1 if the check-in
vector is an actual check-in record:

od = sigmoid(ReLU(oa × wd1 + bd1)× wd2 + bd2), (4)

where oa is the output of attention layer in the discriminator.

Generator

Embedding Layer Attention Layer Output Layer

③ Geographical Location

…...

…...

LSTM(Geo)

LSTM(POIs)
② Temporal Check-ins

① User ID Embedding

...
...

…...

Location FC

① Predicted Check-in Vector

② Location of Next POI

Figure 2. The structure of generator in the framework.

Discriminator

Embedding Layer Attention Layer Output Layer

③ Geographical Location

…...

LSTM(Geo)

LSTM(POIs)② Temporal Check-ins

① User ID Embedding

...
...

① Real or Fake

Check-in FC

…
...

④ Predicted Check-in Vector

Figure 3. The structure of discriminator in the framework.

Adversarial Learning: The core of the generative adversarial network is the adversarial game
between the generator and the discriminator. In other words, promoting the quality of generated
check-in records will improve the performance of distinguishing real or fake samples to the
discriminator while the improvement of discriminator will also promote the performance of capturing
the actual distribution of user preference to the generator. Therefore, different from traditional models,
the generator and the discriminator have individual objective functions. The objective function of
the generator consists of the prediction loss, the geographical location loss, and the generation loss.
The prediction loss is calculated based on the following equation:



Appl. Sci. 2020, 10, 6664 9 of 18

losspred = −
n

∑
j=1

(vjlog(v̂j) + (1− vj)log(1− v̂j)), (5)

where the binary variables vj ∈ {0, 1} is the actual check-in record on the j-th POI in V for the current
user (i.e., User ID), where 0 means that the user has never been to the j-th POI and 1 means that the
user has been to the j-th POI. The variables v̂j ∈ [0, 1] are the predicted check-in record on the j-th POI
in V. The geographical location loss is calculated as below:

lossloc =
1
2
((llat − l̂lat)2 + (llon − l̂lon)2), (6)

where llat and llon are the normalized latitude and longitude of actual check-in POI while l̂lat and l̂lon

are the normalized latitude and longitude of predicted check-in POI. The generation loss is based on
the performance of distinguishing the generated check-in records to the discriminator:

lossgen = log(1− D(v̂|u, Vu)), (7)

where D(v̂|u, Vu) represents the result of discriminator whether the predicted check-in vector v̂
(i.e., the fake sample) is considered as a real or fake sample given a specific user u and a temporal
check-in records Vu. In general, the generator is updated based on lossgen, which directly shows the
quality of produced fake samples. In this paper, due to the sparsity of actual check-in vector based on
an individual and specific temporal check-in records, losspred is used to accelerate the convergence of
capturing the actual distribution to the generator. In addition, due to the significance of geographical
influence in POI recommender systems, lossloc is utilized to take the distance from the previous visited
POI to the next recommended POI into account. Therefore, the objective function of the generator is
calculated based on the following equation:

JG =min
θ

m

∑
i=1

(αlosspred + βlossloc + (1− α− β)lossgen), (8)

where θ is the parameter of generator while α ∈ (0, 1) and β ∈ (0, 1) is the predefined weight of losspred
and lossloc, respectively.

The objective function of discriminator is similar to that of general binary classification, which
can be calculated as below:

JD = min
φ
−

m

∑
i=1

(log(D(v|u, Vu)) + log(1− D(v̂|u, Vu))), (9)

where v and v̂ are the real and predicted check-in vector given a specific user u and temporal check-in
records Vu, respectively. Note that we exploit the general adversarial setting in this paper where
the generator and the discriminator will be alternatively updated once based on the corresponding
objective function until both of them converge.

The GANs are trained to be good at understanding the known information. In our proposed
model, the user and POI embedding are used to capture the characteristics of each user and POI. Due to
the sparsity of check-in records, it is hard for the model to train the embeddings sufficiently. Therefore,
the GANs are useful for the model to capture the embeddings of users and POIs well. In addition,
the GANs can be good at providing appropriate prediction. Even without the consideration of losspred
and lossloc, the generator in this paper is trained to provide the next POI. In detail, the input of the
generator is the latest three visited POI (i.e., 3-size sliding window) which describe the current situation
of the corresponding user, while the output of the generator is the next POI which would be interested
for the user in the current situation (i.e., pattern). Therefore, the structure of GANs provides the
effective strategy for our model to capture the user’s preference based on the contextual check-ins.
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3.3. POI Recommendation

With the convergence of GAN, the generator is used to predict the check-in vector (i.e., POI
recommendation) given a specific user and the corresponding latest sequential check-in records.
In this paper, TopN recommendation is leveraged to provide appropriate POIs where the TopN list
is generated and ordered by the visiting probability of each POI based on v̂. Within the stage of POI
recommendation: (1) the latest check-in records and the corresponding geographical location are
extracted based on a specific user; (2) the user and the latest check-in records are transformed into
the embeddings; (3) the user embedding, the sequential POI embeddings, and the corresponding
geographical locations are considered as the input of generator and the next POI recommendations are
predicted ordered by the probability based on the generated n-dimensional vector.

4. Experiments

In this section, we conduct several experiments on two real-world datasets (i.e., Foursquare and
Gowalla) to evaluate the effectiveness of our proposed approach. Based on the experiments, we aim to
answer the following issues:

• The influence of the embedding and hidden layer on the performance of MTPR;
• The effectiveness of geographical influence and adversarial learning on the POI recommendation;
• The performance of MTPR compared to the baselines on the real-world datasets.

4.1. Experimental Setup

Datasets: The experiments are conducted on two real-world datasets Foursquare and Gowalla
(https://www.ntu.edu.sg/home/gaocong/datacode.htm). Foursquare is the most popular POI
recommender system in the world where users can query interesting POIs (i.e., hotels and restaurants).
In addition, different from traditional search engines, Foursquare provides APIs for users to share
their check-in records and reviews with others as a social network. Therefore, there are numerous
check-in records generated each day. The dataset of Foursquare used in this paper is collected from
August 2010 to July 2011 in Singapore, including 342,850 check-ins. Gowalla is also a famous POI
recommender system where the dataset used in this paper is collected from February 2009 to October
2010 in Virginia and Nevada USA, including 736,148 check-in records. Table 1 shows the fields of each
check-in record and a check-in sample.

Table 1. The fields of each check-in record.

Sample Field (Description)

USER_42 User_ID

LOC_11903 POI_ID

(37.4191867667, 122.2122015167) coordinate (the lat. and long. of POI)

04:12 checkin_time (hour:min)

0 date_id (the representation of date)

To relieve the influence of long-tail data to the robustness of the proposed model and baselines,
we eliminated the users who have fewer than 10 check-ins, and the POIs which have been visited by
fewer than 10 users (POI2Vec removed the users who have fewer than five check-ins, and the POIs
which have been visited by fewer than five users). Table 2 shows the statistics of used Foursquare and
Gowalla datasets in this paper.

https://www.ntu.edu.sg/home/gaocong/datacode.htm
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Table 2. The overview of Foursquare and Gowalla.

Statistics Foursquare Gowalla

Count of Users 1895 5951
Count of POIs 2109 7449

Check-in records 115,114 270,765
Records per user 60.76 45.50
Records per POI 54.60 36.35

Baselines: To evaluate the effectiveness of MTPR, the proposed approach is compared with
several state-of-art methods considering the geographical influence including PRME [8], POI2Vec [6],
and GeoIE [9]. In addition, to validate the effectiveness of adversarial learning and geographical
influence, we also compare MTPR to its variants which eliminate the adversarial loss or the
geographical LSTM. These baselines are briefly introduced as below:

• PRME [8]: transforms each POI into a point in a K-dimensional Euler space using the metric
embedding and the distance between the transformed points is considered as the similarity
between the corresponding POIs.

• POI2Vec [6]: is an approach to learning the latent representation (i.e., embedding) of users
and POIs based on the individual sequential check-in records simultaneously considering the
geographical influence and the user preference. The geographical location is split into blocks and
the geographical relationship between POIs is measured using the Huffman tree.

• GeoIE [9]: is a method to providing POI recommendations considering the POI-specific
geographical influence including the geographical influence of POI, the geographical
susceptibility of POI, and their physical distance.

• Geo-ALM [10]: is a geographical information based adversarial learning model which utilized a
game setting to generate a few but critical negative samples (i.e., POIs that users have never been
to) for improving the effectiveness of POI recommendation.

• MTPR-NoGeo: is a variant of MTPR which eliminates the geographical location loss lossloc and
the corresponding geo-LSTM module.

• MTPR-NoGen: is a variant of MTPR which eliminates the generation loss lossgen and trains the
generator only based on the prediction loss losspred and geographical location loss lossloc.

Metrics and Parameters: In this paper, Precision, Recall, and F1-score are calculated based on the
following equations:

Precision@k =
∑u∈U |R(u) ∩ T(u)|

∑u∈U |R(u)|
, (10)

Recall@k =
∑u∈U |R(u) ∩ T(u)|

∑u∈U |T(u)|
, (11)

F1− score@k =
2Recall@k× Precision@k
Recall@k + Precision@k

, (12)

where k is the length of recommendation list (i.e., top-k recommendation), R(u) is the set of POIs
which are recommended to the user in the recommendation list, and T(u) is the set of POIs which are
actually visited by the user in the test dataset. For a given user, the corresponding check-in records are
sorted by the timestamps and the latest 15% check-ins are considered as the test dataset to evaluate the
performance of models.

The experimental setup and the used parameters are introduced in detail as below.
The segmentation of datasets is 70%/15%/15% based on the temporal check-in records where the first
70% is the training set for learning the models, the second 15% is the validation set for optimizing the
parameters, and the third 15% is the testing set for evaluating the performance. The sliding window,
which is used to split the contextual POIs, is set as 3. The learning rate of discriminator and generator
is set as 0.01. The weights of loss in the generator are set as α = 0.5 and β = 0.3. The dimension of
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user embedding and POI embedding is 300, while the dimension of the hidden layer in LSTM is set as
100. The training epoch is defined as 20. The technique of simultaneous gradient descent is used to
update the model. The rate of training epochs of the generator compared with the discriminator is
1:1. To evaluate the topN POI recommendation of baselines and proposed approach, the precision,
recall, and F1-score are calculated at Top 5, 10, 15, and 20. In addition, the losses (i.e., losspred, lossgen,
and lossloc) demonstrate the difference between predicted and actual ones. Therefore, the fluctuation
of loss is considered as an effective way to determine that whether the model is converged or not in
this domain.

4.2. Discussion and Results

First, we evaluate the influence of the embedding and hidden layer on the performance of MTPR.
Figures 4 and 5 illustrate the performance of MTPR using different combinations of embeddings
and hidden layers on top-10 recommendations of Foursquare and Gowalla, respectively. Note that,
except for the 200-dimensional hidden layer, the performance (i.e., precision) is improved with the
increasing dimension of embeddings on the datasets. In addition, the performance is better when the
dimension of embeddings is higher than the dimension of hidden layers. In summary, the performance
(i.e., precision) is not improved monotonously with the increasing dimension of embeddings or hidden
layers. It would be better to select the parameters based on specific scenarios.

Foursquare

Precision
h_d 50 100 200 300

50 0.1359 0.1458 0.1510 0.1553
100 0.1487 0.1562 0.1421 0.1588
200 0.1570 0.1608 0.1599 0.1562
300 0.1585 0.1627 0.1447 0.1618

Gowalla

Precision
h_d 50 100 200 300

50 0.0661 0.0727 0.0801 0.0819
100 0.0811 0.0837 0.0931 0.0885
200 0.0923 0.0931 0.0711 0.0807
300 0.0970 0.1012 0.0814 0.0876
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Figure 4. The performance using different dimensions of embedding and hidden layers on Foursquare.

Foursquare

Precision
h_d 50 100 200 300

50 0.1359 0.1458 0.1510 0.1553
100 0.1487 0.1562 0.1421 0.1588
200 0.1570 0.1608 0.1599 0.1562
300 0.1585 0.1627 0.1447 0.1618

Gowalla

Precision
h_d 50 100 200 300

50 0.0661 0.0727 0.0801 0.0819
100 0.0811 0.0837 0.0931 0.0885
200 0.0923 0.0931 0.0711 0.0807
300 0.0970 0.1012 0.0814 0.0876

0.1300

0.1350

0.1400

0.1450

0.1500

0.1550

0.1600

0.1650

50 100 200 300

Pr
ec
is
io
n

Dimension of Hidden Layer

embedding=50 embedding=100

embedding=200 embedding=300

0.0600
0.0650
0.0700
0.0750
0.0800
0.0850
0.0900
0.0950
0.1000
0.1050

50 100 200 300

Pr
ec
is
io
n

Dimension of Hidden Layer

embedding=50 embedding=100

embedding=200 embedding=300

Figure 5. The performance using different dimensions of embedding and hidden layers on Gowalla.

In addition, we evaluate the influence of different combinations of α and β on Foursquare. Figure 6
shows the F1-score of our proposed approach on Foursquare using the possible combination of α and
β (i.e., α + β ≤ 1). The value of F1-score reaches the peak near α = 0.5 and β = 0.3. Furthermore,
the performance is worse when losspred is ignored (i.e., α = 0); meanwhile, the performance is not stable
if lossloc is missed (i.e., β = 0). The performance is better if the approach simultaneously takes losspred,
lossgen, and lossloc into account instead of only considering losspred (i.e., α = 1). The experimental
results demonstrate that the GAN-based structure cannot address the task of POI recommendations
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according to lossgen (i.e., α = 0 and β = 0); however, the GAN-based structure is capable of improving
the performance if the proposed approach takes losspred and lossloc into account (especially losspred).

Figure 6. The performance using different combinations of alpha and beta on Foursquare.

To investigate the convergence of our proposed approach, we conduct an experiment which traces
the loss of generator (i.e., the convex linear combination JG of losspred, lossgen and lossloc shown in
Equation (8)) and discriminator, JD, during the process of training each batch (i.e., the batch size is
32) on Foursquare. Figure 7 illustrates that the fluctuation of loss become stable after the 5th epoch.
Although there exists a fluctuation from the 15th and 18th epoch, the trend of loss becomes stable
again after the 19th epoch. In summary, the stable trend of loss demonstrates the convergence of the
proposed approach.
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Figure 7. The convergence of the proposed approach on Foursquare.

Second, we investigate the effectiveness of geographical influence and adversarial learning to the
POI recommendation. Tables 3 and 4 show the performance of MTPR using different components on
Foursquare and Gowalla, respectively. The std error of each metric is given in the bracket next to the
corresponding metric. The density of the dataset (i.e., actual check-in records of individuals) causes
the low values of Precision, Recall, and F1-measure. As we can observe from Table 2, although the
check-in records of each user are about 50, most of the users only have 20–30 check-in records where
these records also have many duplicate POIs. In summary, MTPR outperforms MTPR-NoGeo and
MTPR-NoGen, which means the components of geographical module and adversarial learning are
capable of improving the performance of POI recommendations. In detail, MTPR-NoGen outperforms
MTPR-NoGeo, which is a model that consists of LSTM but without the consideration of geographical
influence, which demonstrates that the geographical influence is more significant than the mechanism
of adversarial learning in the current POI recommendation task. In addition to all the variants of
MTPR, the precision is decreasing with the increase of TopN recommendations. In other words,
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the approaches rank the relevant recommendation (i.e., the hitting recommendations based on the
testing dataset) at the top of the list, which shows the effectiveness of MTPR.

Table 3. The performance of MTPR using different components on Foursquare.

Metric
Model

MTPR-NoGeo MTPR-NoGen MTPR

Precision

Top5 0.152(0.088) 0.219(0.011) 0.232(0.003)
Top10 0.113(0.060) 0.157(0.006) 0.166(0.001)
Top15 0.092(0.045) 0.126(0.004) 0.132(0.001)
Top20 0.079(0.036) 0.106(0.003) 0.111(0.001)

Recall

Top5 0.105(0.061) 0.152(0.008) 0.161(0.002)
Top10 0.156(0.083) 0.217(0.009) 0.229(0.002)
Top15 0.192(0.094) 0.261(0.009) 0.274(0.002)
Top20 0.219(0.100) 0.292(0.009) 0.307(0.003)

F1-score

Top5 0.124(0.072) 0.179(0.009) 0.190(0.002)
Top10 0.131(0.069) 0.182(0.007) 0.192(0.002)
Top15 0.125(0.061) 0.169(0.006) 0.178(0.002)
Top20 0.116(0.053) 0.155(0.005) 0.163(0.001)

Table 4. The performance of MTPR using different components on Gowalla.

Metric
Model

MTPR-NoGeo MTPR-NoGen MTPR

Precision

Top5 0.071(0.048) 0.120(0.035) 0.153(0.001)
Top10 0.050(0.034) 0.083(0.024) 0.106(0.001)
Top15 0.040(0.027) 0.065(0.018) 0.082(0.000)
Top20 0.034(0.022) 0.054(0.015) 0.068(0.000)

Recall

Top5 0.058(0.039) 0.098(0.029) 0.125(0.001)
Top10 0.081(0.055) 0.136(0.039) 0.172(0.001)
Top15 0.097(0.065) 0.160(0.044) 0.201(0.001)
Top20 0.110(0.071) 0.177(0.048) 0.222(0.001)

F1-score

Top5 0.064(0.043) 0.108(0.031) 0.138(0.001)
Top10 0.062(0.042) 0.103(0.029) 0.131(0.001)
Top15 0.057(0.038) 0.093(0.026) 0.117(0.001)
Top20 0.051(0.033) 0.083(0.023) 0.104(0.000)

Third, we compare MTPR with the baselines to validate the effectiveness of our proposed approach
in the task of TopN recommendations. Table 5 shows the comparison between the generated samples
(i.e., recommendations) and the real check-ins. These cases (i.e., POI ids) are sampled from four users
where the contextual check-in sequence is ordered by timestamps, the real check-ins are ordered by
POI ids, and the Top10 recommendations are ordered by the relevance to the user preferences. The real
check-ins are the actual check-in records following the contextual check-in sequence. The first case is
familiar in the recommendations where the 896th POI hits the user preference while the remaining
recommendations are invalid. The second one is an effective recommendation list where several
recommendations (i.e., 904, 1007, 1275, 1642, and 722) hit the user preference. The third one is also
a typical case in the dataset where the contextual check-ins consist of the duplicated POIs (i.e., 209),
which is difficult for the model to provide appropriate recommendations. The last case shows that the
proposed approach may generate POIs users have visited (i.e., 1477). In other words, the diversity of
recommendations should be further improved.
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Table 5. The comparison between the generated samples (i.e., recommendations) and the real check-ins
at Top10.

Contextual Check-in Sequence Real Check-Ins Top10 Recommendations

2072, 1194, 1118 169, 289, 462, 486, 628, 759, 767,
839, 896, 954, 986, 1005, 1076,
1194, 1273, 1312, 1453

1630, 427, 276, 1621, 896, 538,
1308, 903, 1918, 1329

858, 1242, 2081 119, 265, 352, 473, 489, 722, 726,
904, 1007, 1120, 1132, 1154, 1273,
1275, 1448, 1498, 1571, 1574, 1610,
1642, 1654, 1747, 1971

904, 1007, 1275, 83, 1226, 1642,
1447, 1641, 722, 1880

209, 209, 209 144, 183, 209, 360, 362, 373, 706,
925, 933, 1058, 1219, 1416, 1432,
1551, 1566, 1629, 1677, 1758, 1947,
1971, 1981

1237, 899, 1180, 1807, 1017, 1758,
561, 1810, 1097, 209

889, 1477, 1345 42, 264, 628, 701, 722, 777, 784,
889, 931, 976, 1325, 1477, 1921

1477, 690, 805, 1210, 333, 722,
1306, 1395, 784, 427

To reveal the overall performance of our proposed approach, Tables 6 and 7 describe the
performance of baselines and MTPR on the two real-world datasets. Observed from the experimental
results, MTPR outperforms other baselines on both datasets, which significantly improves the Top5
recommendation. In detail, the GAN-based model Geo-ALM outperforms other baselines that shows
that the structure of generative adversarial networks is capable of improving the performance of POI
recommendations. In addition, the performance of PRME is fluctuating with the increasing length of
recommendation list (i.e., TopN recommendations), which means that PRME cannot capture the user
preference exactly but promotes the diversity of recommendations. Compared to the performance of
MTPR-NoGeo and MTPR-NoGen in Tables 3 and 4 with the performance of baselines considering
the geographical influence in Tables 6 and 7, both MTPR-NoGeo and MTPR-NoGen outperform the
baselines which further demonstrates that the structure of geographical LSTM and the mechanism of
adversarial learning are capable of improving the performance of POI recommendations.

Table 6. The performance of baselines and MTPR on Foursquare.

Metric
Model

PRME POI2Vec GeoIE Geo-ALM MTPR

Precision

Top5 0.036(0.007) 0.121(0.055) 0.138(0.021) 0.189(0.005) 0.232(0.003)
Top10 0.034(0.008) 0.123(0.043) 0.120(0.017) 0.152(0.002) 0.166(0.001)
Top15 0.052(0.004) 0.093(0.012) 0.101(0.015) 0.124(0.003) 0.132(0.001)
Top20 0.064(0.003) 0.078(0.009) 0.088(0.005) 0.101(0.004) 0.111(0.001)

Recall

Top5 0.025(0.005) 0.084(0.036) 0.099(0.014) 0.143(0.002) 0.161(0.002)
Top10 0.047(0.004) 0.173(0.021) 0.165(0.007) 0.192(0.003) 0.229(0.002)
Top15 0.108(0.003) 0.195(0.015) 0.203(0.006) 0.243(0.001) 0.274(0.002)
Top20 0.180(0.005) 0.213(0.010) 0.224(0.003) 0.274(0.004) 0.307(0.003)

F1-score

Top5 0.029(0.003) 0.099(0.086) 0.115(0.016) 0.163(0.003) 0.190(0.002)
Top10 0.039(0.007) 0.143(0.057) 0.138(0.013) 0.170(0.001) 0.192(0.002)
Top15 0.070(0.005) 0.125(0.025) 0.134(0.008) 0.164(0.005) 0.178(0.002)
Top20 0.094(0.004) 0.114(0.014) 0.126(0.007) 0.148(0.002) 0.163(0.001)
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Table 7. The performance of baselines and MTPR on Gowalla.

Metric
Model

PRME POI2Vec GeoIE Geo-ALM MTPR

Precision

Top5 0.053(0.006) 0.098(0.065) 0.115(0.018) 0.123(0.002) 0.153(0.001)
Top10 0.044(0.007) 0.082(0.049) 0.090(0.020) 0.099(0.001) 0.106(0.001)
Top15 0.030(0.005) 0.060(0.015) 0.066(0.016) 0.079(0.003) 0.082(0.000)
Top20 0.400(0.002) 0.053(0.008) 0.062(0.006) 0.065(0.001) 0.068(0.000)

Recall

Top5 0.045(0.004) 0.082(0.034) 0.098(0.012) 0.111(0.002) 0.125(0.001)
Top10 0.073(0.004) 0.140(0.025) 0.138(0.009) 0.148(0.002) 0.172(0.001)
Top15 0.079(0.002) 0.143(0.013) 0.161(0.005) 0.173(0.004) 0.201(0.001)
Top20 0.122(0.003) 0.170(0.012) 0.215(0.002) 0.220(0.001) 0.222(0.001)

F1-score

Top5 0.048(0.003) 0.089(0.080) 0.105(0.015) 0.117(0.001) 0.138(0.001)
Top10 0.054(0.005) 0.103(0.053) 0.108(0.015) 0.119(0.001) 0.131(0.001)
Top15 0.043(0.004) 0.084(0.022) 0.093(0.006) 0.108(0.001) 0.117(0.001)
Top20 0.186(0.004) 0.080(0.013) 0.096(0.004) 0.100(0.002) 0.104(0.000)

However, there still exist some limitations and shortcomings which should be issued to improve
the performance of POI recommendations further. First, the setup of geographical influence
(i.e., coordinate LSTM) is straightforward and easily causes the problem of overfitting. A smarter
strategy should be proposed to fit the path of changing coordinate for considering the geographical
influence. Second, the training samples (i.e., real and fake) contain the instances that have the same
contextual sequential POIs but are followed by different check-ins where these samples will confuse
the models during the training process. It is challenging to relieve the influence caused by the
conflicting training samples. Third, the structures of generator and discriminator are similar, which is
not beneficial to adversarial learning. The significant difference between generators and discriminators
may further improve the performance of the adversarial setup.

5. Conclusions

In this paper, we propose a multi-task learning based POI recommendation approach
simultaneously considering the sequential check-in records and the geographical influence.
The experimental results show that both the module of geographical LSTM and the setup of adversarial
learning are capable of improving the performance of POI recommendations on the real-world
datasets (i.e., Foursquare and Gowalla). In addition, the performance of the proposed method
outperforms the baselines, which also take the geographical influence into account, especially at the
Top5 recommendations, which demonstrates the effectiveness of MTPR to capture the user preference.

In the future, there still exists some work for which it is worth making an effort. First, besides the
geographical influence, the category of POI is also a significant factor for the next visited POI in the
sequential check-in records. It would be better to simultaneously consider the geographical and the
category influence for capturing the user preference. Second, deep learning-based GAN training
is time-consuming and hard to use in practical scenarios. An effective online learning approach
would make these deep learning-based methods accessible in recommender systems. Third, the TopN
recommendation is a traditional strategy for providing delicate items based on the relevance between
users and items. However, if the user preference cannot be captured precisely, the ranking list is
not meaningful anymore. Therefore, it is necessary to propose a kind of recommendation strategy
considering the changing user preference.
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