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Abstract. For time series forecasting, the weight distribution among
multivariables and the long-short-term time dependence are always very
important and challenging. Traditional machine forecasting can’t auto-
matically select the effective features of multivariable input and can’t
capture the time dependence of sequences. The key to solve this problem
is to capture the spatial correlations at the same time, the spatiotempo-
ral relationships at different times and the long-term dependence of the
temporal relationships between different series. In this paper, inspired
by human attention mechanism including encoder-decoder model, we
propose DPAST-based RNN (DPAST-RNN) for long-term time series
prediction. Specifically, in the first phase we use attention mechanism
to extract relevant features at each time adaptively then we use stacked
LSTM units to extract hidden information of time series both from time
and space dimensions. In the second phase, we use another attention
mechanism to select the related hidden state in encoder to the hidden
state of the decoder at the current time to make context vector which
is embed into recurrent neural network in decoder. Thorough empirical
studies based upon the VM-Power dataset we collected on OpenStack
and the NASDAQ 100 Stock dataset demonstrate that the DPAST-RNN
can outperform state-of-the-art methods for time series prediction.

Keywords: Time series prediction · Spatiotemporal LSTM ·
Attention mechanism · Encoder-decoder model

1 Introduction

Time series prediction algorithm has a wide range of applications, e.g., fine-
grained photovoltaic output prediction [3], financial prediction [20], environ-
mental forecasting [21], heart and brain signal analysis [7] and prediction of
geo-sensor over future hours [13]. Generally, time series prediction can be divided
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into single variable problem and multivariable problem. However, in most cases,
multivariable time series prediction problem is more in line with the needs
of practical modeling. Different from the single variable time series prediction
with strong periodicity, the problem of the multivariable prediction is mainly
reflected in the following aspects: the correlation between the multivariable fea-
tures at the same time, the correlation between the multivariable features at
different times and the correlation between the multivariable features and the
time of the target sequence. For some classical methods in time series prediction,
ARIMA [1] assumes that the sequence variation is stable, so it is not suitable
for non-stationary and multivariate time prediction. Support vector regression
(SVR) [14], as a traditional regression method is used for time series prediction
where feature sequences are mapped into high dimensional space, which pays
more attention to the spatial correlations of these exogenous series at the same
time, but ignores the time dependence. With the development of neural net-
work, recurrent neural network (RNN) [18] especially Long short-term memory
units (LSTM) [10] and gated recurrent unit (GRU) [5] are widely used in time
series prediction. The encoder-decoder network structure was first proposed by
Sutskever et al. [19] to solve the sequence to sequence machine translation prob-
lem. RNN based encoder-decoder network [5] was initially applied to machine
translation. However, with the increasing length of vector representation, the
performance of the encoder-decoder network deteriorated rapidly. Therefore,
Bahdanau et al. [2] proposed the attention mechanism based on encoder-decoder
structure. Attention mechanism has been widely used in machine translation [6],
image caption [4], exogenous time series prediction [9], etc. Due to the success of
attention-based encoder-decoder networks in sequence learning, Qin et al. [17]
employ two-stage attention mechanism based on encoder-decoder structure to
forecast multivariate time series. To capture the spatial dependency between sen-
sors, Liang et al. [13] added global attention in GeoMAN. However, the decoder
part of the models mentioned above does not fully consider the cyclic relationship
between the target information and the encoded data in time.

In this paper, we use spatiotemporal LSTMs in the encoder network to obtain
more accurate spatiotemporal relationship of the input data, and then embed
the context information into the LSTM in the decoder network to enhance the
attention of the target sequence to the encoding information in time. In addi-
tion, we build OpenStack virtual environment to collect VM power dataset and
use DTW to preprocess and filter the data. The contributions of our work are
three-fold:

– In the stage of data preprocessing, we use DTW [15] to analysis the original
multivariate data and extract the effective feature variables in our dataset.

– In addition, considering that the single-layer LSTM can not transfer the effec-
tive information of multivariate input data, we use the spatiotemporal LSTMs
to encode time series information as the input of decoder after the input
attention mechanism.
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– In the decoder, we embed the context vector generated by the temporal atten-
tion mechanism into recurrent neural network, so as to obtain a more accurate
spatiotemporal relationship.

2 Model

The framework of the proposed forecasting model is shown in Fig. 1, which con-
sists of encoder and decoder. The two phases attention modules are contained in
the encoder and decoder respectively. The first phase in Encoder can adaptively
select the most relevant input features while the second phase in Decoder uses
categorical information to decode the stimulus. The Encoder encodes the time
series conditioned on the input attention through the spatiotemporal LSTMs. In
the decoder, the temporal attention is used to generated context vector ct which
represents a weighted sum of previous encoder hidden state across all the time
steps. Then we combine the ct with the hidden state in LSTM unit as the new
hidden state fed to LSTM.

Fig. 1. Graphical illustration of the Dual-Phase Attention-based Recurrent Neural Net-
work using Spatiotemporal LSTMs model.

2.1 Encoder

The encoder is used to encode the input sequence in time window T into the
feature representation through RNN. Inspired by the DSTP [11] model which
can select elementary stimulus features in the early stages of processing and
input attention mechanism in DA-RNN [17], we use spatial attention to select
the relevant driving series adaptively.

For time series prediction, given the input sequence X = (x1,x2...,xn)�

where n is the number of driving (exogenous) series, it can be divided into a series
of time windows with T. Given the k-th input driving (exogenous) series xk =
(xk

1 , x
k
2 , ..., x

k
T )�, we can construct an input attention mechanism by referring to

the previous hidden state ht−1 and the cell state st−1 in the encoder LSTM unit
with:
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ekt = ve
�tanh(We[ht−1; st−1] + Uex

k) (1)

and

αk
t =

exp(ekt )∑n
i=1 exp(eit)

(2)

where ve ∈ RT , We ∈ RT×2m, Ue ∈ RT×T are parameters to learn. After that,
we employ a softmax function to ensure all the attention weights at per time
step sum to one. With these attention weights, we can adaptively extract the
driving time series with:

x̃ = (α1
tx

1
t , α

2
tx

2
t , ..., α

n
t xn

t ) (3)

Then the encoder is applied to learn a mapping from xt to ht (at time step
t) with ht = fe(ht−1, xt) can be updated as ht = fe(ht−1, x̃t) where fe is a
spatiotemporal LSTM architecture based on LSTM units can be summarized as
follows:

ft = σ(Wf [ht−1;xt] + bf ) (4)

it = σ(Wi[ht−1;xt] + bi) (5)

ot = σ(Wo[ht−1;xt] + bo) (6)

st = ft � st−1 + it � tanh(Ws[ht−1;xt] + bs) (7)

ht = ot � tanh(st) (8)

where [ht−1;xt] ∈ Rm+n is a concatenation of the previous hidden state ht−1

and the current input xt, Wf , Wi, Wo, Ws ∈ Rm×(m+n), and bf , bi, bo, bs ∈ Rm

are parameters to learn.
In order to enhance the ability of LSTM to capture long-term memory, we

use two layers of stacked LSTM to transmit information in space and time. At
every time step t, the first layer of LSTM is hl

t = f l
e(h

l
t−1, x̃t) where l = 1. Given

the current level of LSTM layer l where l � 2, the output can be updated with:

hl
t = f l

e(h
l
t−1, h

l−1
t ) (9)

then the output is a concatenation of the previous T hidden state of the
LSTM units as the encoded input driving series.

2.2 Decoder

In order to predict the output ỹt, we use another LSTM to decode the input
infomation. In the decoder, the attention weight of the decoder hidden state at
time t is calculated based upon the previous decoder hidden state dt−1 and the
cell state of the LSTM unit s

′
t−1 with:

lti = vd
�tanh(Wd[dt−1; s

′
t−1] + Udhi), 1 � i � T (10)
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βi
t =

exp(lit)
∑T

j=1 exp(ljt )
(11)

where [dt−1; s
′
t−1] ∈ R2p is a concatenation of the previous hidden state and cell

state of the LSTM unit in the decoder and hi is concatenation of the hidden state
in last time window T . vd ∈ Rm, Wd ∈ Rm×2p, Ud ∈ Rm×m are parameters to
learn. The weights of the i-th encoder hidden states βi

t represent the importance
it take at time ti. Since each encoder hidden state hi is mapped to a temporal
component of the input, the context vector ct can be computed as a weighted
sum of all encoder hidden states {h1, h2, ..., hT },

ct =
T∑

i=1

βi
thi (12)

Then the updated history target value can be combined with ct−1 and the
given target series yt−1 = {yt−1, yt−1, ..., yt−1}:

ỹt−1 = yt−1
� · ct−1 (13)

where yt−1
� · ct−1 is the point product of the decoder input yt−1 and the com-

puted context vector ct−1.
In order to enhance the influence of context vector on decoder, we combine

the context vector with the hidden state of the decoder at every moment, the
new hidden state can be updated after a linear layer as,

d̃t = vc
�tanh(Wc[ct; dt−1]) (14)

where [ct; dt−1] ∈ Rm×p is a concatenation of the previous hidden state in LSTM
unit of decoder and the current context vector ct. We choose the nonlinear
function fd as a LSTM unit [10] to model long-term dependencies. Then the
hidden state dt can be updated as:

dt = fd(d̃t−1, ỹt−1) (15)

and the final prediction can be computed as:

ỹT = vy
�(Wy[dT ; cT ] + bw) + bv (16)

where [dT ; cT ] ∈ Rp+m is a concatenation of the decoder hidden state and the
context vector and the Wy, bw, bv are the parameters to learn.

2.3 Training Procedure

The model is based on encoder-decoder structure and parameters can be learned
by standard back propagation with mean squared error as the objective function:

L(yT , ỹT ) =
1
N

N∑

i=1

(yi
T − ỹi

T )2 (17)
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where N is the number of training samples. We choose Adam optimizer [12] to
train the model and the size of the minibatch is 128. The learning rate is 0.001.
Specifically, the proposed DPAST-RNN can make the loss function converge
quickly.

3 Experiments

In this section, we first introduce the two datasets for this experiment. In addi-
tion, we introduce the collection process of VM-Power dataset. Then we discuss
the parameter settings for DPAST-RNN and the evaluation metrics. Finally, we
compare the DPAST-RNN with three different baseline methods.

3.1 Data Acquisition

In order to verify the performance of our DPAST-RNN model on more time
series data, we configured the OpenStack environment to collect the indicators
and real power of the virtual machine to make VM-Power dataset. There is an
OpenStack controller node, an OpenStack compute node, and a monitor node
for collecting the data from the compute node. These nodes are connected to the
same (Local Area Network) LAN. The power of IT equipment can be measured
by the Power Distribution Unit (PDU). The architecture is shown in Fig. 2.

Fig. 2. The architecture of data collection procedure for VM-Power.

We deployed a collector called collectd [8] on the compute node to collect
metrics of the compute node. The sampling frequency of collectd is set to 1 Hz,
the same as the sampling frequency of PDU. Specifically, we use a client machine
with a Quad-core CPU to request web resource and collect virtual machine
metrics per seconds with real power in PDU.
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3.2 Datasets and Setup

In this experiment, we used two datasets NASDAQ 100 Stock and VM-Power as
shown in Table 1 where the size of encoder hidden states m and decoder hidden
states p are set as m = p = 64 and 128 to test the performance of different
methods for time series prediction.

Table 1. The statistics of two datasets.

Dataset Driving
series

Target
series

Size

Train Valid Test

VM-Power 10 1 2636 263 528

NASDAQ 100 Stock 80 1 40551 4055 8111

The NASDAQ 100 Stock is a public dataset which contains the stock prices
of 81 major corporations under NASDAQ 100. In this dataset, we use the share
price of NDX as the target sequence and the share price of the remaining 80
companies as the driving time sequence.

From over 100 metrics we collected in origin VM-Power dataset, we draw a
line chart of power and some features to simply analyze the correlation between
them. As shown in Fig. 3, the trend of the four CPU cores usage is roughly as
same as the trend of the power curve. On the contrary, memory-free, memory-
cached, irq-CAL, cup-2-idle, are not related to or even contrary to power trend,
so we use dynamic time warping (DTW) [15] to measure the similarity between
feature variables and target sequences and select effective variables in the data
preprocessing stage to enhance the robustness of the model. Compared with the
traditional Euclidean distance, DTW can better compare the similarity of two
time waveforms by distorting the sequence on the x-axis. The 10 metrics from
DTW selection are cpu-0-usage, cpu-1-usage, cpu-2-usage, cpu-3-usage, cpu-0-
user, cpu-1-user, cpu-2-user, cpu-3-user, cpu-0-system, cpu-1-system.

Fig. 3. The curves of power and the features
selected of VM-Power dataset.

Fig. 4. Plot of input spatial atten-
tion weights in one time window
T = 10 for 10 virtual machine
energy consumption index vari-
ables in VM-Power dataset.
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3.3 Parameter Settings

We initialized the size of hidden states 128 both in encoder and decoder and
choose the window size T=10 where T ∈ {5, 10, 15, 20, 25} that achieve the
best performance over the validation set are used for evaluation. To measure
the effectiveness of various methods for time series prediction, we consider two
different evaluation metrics, root mean squared error (RMSE) [16] and mean
absolute error (MAE). Given yt is the target at time t and ŷt is the predicted

value at time t, RMSE is defined as RMSE =
√

1
N

∑N
i=1(y

t
i − ŷt

i)2 and MAE is

defined as MAE = 1
N

∑N
i=1 |yt

i − ŷt
i |.

3.4 Results: Time Series Prediction

We compared our DPAST-RNN with three baseline methods in two datasets and
proved its effectiveness. The results of prediction in two datasets are shown in
Fig. 5 and 6. Among these baselines, LSTM [10] is a basic method to address time
series prediction in RNN. From the prediction results in Fig. 5, the model based
on RNN can better predict the time series data with more severe fluctuations.
For the rising part of continuous oscillation, our model can better reduce the
time delay. We also show the visual attention distribution in Fig. 4. We observe
that the different characteristic variables get different weights in time window
T which indicates that input attention mechanism can effectively extract the
relevant driving sequence.

Fig. 5. VM-Power prediction result.

The time series prediction results of DPAST-RNN and baseline methods
over the two datasets are shown in Table 2. In Table 2, the results of the RMSE
of ARIMA is generally worse than the RNN based methods. This is because
ARIMA only consider the target series rather than the relationship between
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Fig. 6. NASDAQ 100 Index prediction result.

Table 2. Time series prediction results over the Vm-Power dataset and NASDAQ 100
Stock dataset (best performance displayed in boldface).

Models VM-Power dataset NASDAQ 100 Stock dataset

MAE RMSE MAE RMSE

ARIMA 1.97 2.66 0.92 1.47

LSTM(64) 0.282 0.003 0.362 0.003 0.262 0.005 0.390 0.003

LSTM(128) 0.270 0.003 0.347 0.003 0.251 0.005 0.380 0.003

DA-RNN(64) 0.014 0.003 0.019 0.001 0.216 0.002 0.310 0.003

DA-RNN(128) 0.016 0.004 0.021 0.005 0.229 0.002 0.330 0.003

DPAST-RNN(64) 0.015 0.001 0.017 0.001 0.218 0.002 0.319 0.005

DPAST-RNN(128) 0.012 0.001 0.014 0.001 0.212 0.002 0.298 0.005

driving series. The encoder-decoder structure with integration of the input atten-
tion mechanism as well as temporal attention mechanism performs better than
original LSTM. With integration of the input attention mechanism and spa-
tiotemporal LSTMs in encoder as well as context vector embedded in recurrent
neural network in decoder, our DPAST-RNN achieves the best MAE and RMSE
across two datasets since it not only uses spatiotemporal LSTMs in encoder with
input attention to extract relevant driving series, but also combine the context
vector with hidden state in LSTM in the encoder to obtain a more accurate
spatiotemporal relationship across all time steps.

4 Conclusion and Future Work

In this paper, we propose a DPAST-RNN model based on spatiotemporal LSTM
network for time series prediction, which consists of two phases attention mech-
anism. In the proposed model, we use DTW to remove the noise of multivari-
ate input time series. In the encoder part of DPAST-RNN, the spatiotemporal
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LSTMs can accurately encode the driving series after input attention mecha-
nism. In the decoder part of DPAST-RNN, the updated hidden state in LSTM
with context vector can naturally capture the long-range temporal information
of the encoded inputs. The experimental results on two datasets demonstrate a
higher performance than other baseline methods.

In the future, we will explore time series prediction based on attention mech-
anism without RNN structure. Moreover, we will extend our method to solve
the problem of long-term prediction.
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