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Abstract—Virtualization technologies provide solutions of
cloud computing. Virtual resource scheduling is a crucial task
in data centers, and the power consumption of virtual resources
is a critical foundation of virtualization scheduling. Containers
are the smallest unit of virtual resource scheduling and migration.
Although many effective models for estimating power consump-
tion of virtual machines (VM) have been proposed, few power
estimation models of containers have been put forth. In this paper,
we offer a fast-training piecewise regression model based on
decision tree to build a VM power estimation model and estimate
the containers’ power by treating the container as a group of
processes on the VM. In our model, we characterize the nonlinear
relationship between power and features and realize the effective
estimation of the containers on the VM. We evaluate the proposed
model on 13 workloads in PARSEC and compare it with several
models. The experimental results prove the effectiveness of our
proposed model on most workloads. Moreover, the estimated
power of the containers is in line with expectations.

Index Terms—power estimation, containers, virtual machines,
data centers

I. INTRODUCTION

The fast-growing power consumption of computational in-

frastructures takes up a significat portion of the overall build-

ing and maintenance cost of data centers. Accordingly, many

virtual resource scheduling approaches incorporated power

consumption into the performance metrics [1]–[3]. Accurate

estimation and forecast of power consumption in data centers

is the cornerstone of better virtual resource scheduling and

efficient power management, resulting in reduced electric-

ity bills. The power estimation of containers is meaningful

because containers are the smallest unit of virtual resource

scheduling and migration in data centers, whether the container

is running on the physical server or running on the Virtual

Machine (VM). Many solutions of VM power estimation

have been developed [4]–[10], but few works focus on the

power estimation of containers [11]–[13]. To the best of our

knowledge, there is no container power estimation model

considering the scene where the containers are running on

VMs.
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With the above observation, we are motivated to develop

a solution to container power estimation in the scene of

containers running on VMs. The difficulty of the power

estimation of containers running on VMs is the Performance

Monitoring Counters (PMC) commonly used in VM power

modeling is unavailable in such environments. Therefore, we

select Operating System Metrics (OSM) as features instead.

Stemming from the demand of real-time container scheduling

in data centers and the problem of the nonlinear relationship

between VM features and power in some servers, we adopt

a fast-training piecewise regression model based on decision

tree. We replace each leaf node of the decision tree with a

linear model to realize the further estimation of containers.

In order to increase model flexibility and reduce model com-

plexity, we propose a universal model suitable for different

VM types by summing the feature vector of the same type of

VMs together. Regarding a container as a group of processes

running on the VM, containers’ power can be estimated by the

VM model when the features of containers can correspond to

the features of VMs one to one. After validating our model

on the workloads in benchmarks, the results show that our

model outperforms the other models on most workloads, and

the containers’ power is estimated as expected.

The rest of the paper is organized as follows. In Section

II, we review the related works on power estimation of VMs

and containers. In Section III, we propose a universal power

estimation model for VMs and containers and elucidate its

feasibility. We introduce our experimental setup and evaluate

the performance of the model in Section IV. Finally, in Section

V, we summarize this paper.

II. RELATED WORKS

There are mainly two kinds of power estimation models for

VMs and containers. The one is regression model. The other

is decompostion model. For VM power estimation, numerous

variants of linear regression were used [7]–[10]. Yu et al.

adopted Long Short Term Memory (LSTM) [14] to find the

correlation between the features and used Attention [15] to

improve regression generalization [4]. Jiang et al. decomposed

the physical machine’s power to each VM’s power by non-

deterministic Shapley Value to realize the fair allocation [5].

For container power estimation, the primary idea behind re-

gression models is also linear regression [12], [13]. Brondolin
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Fig. 1. The framework of the proposed model.

et al. decomposed the Running Average Power Limit (RAPL)

[16] value of the CPU cores to the power of each thread [11].

Subsequently, the power of all threads run by the container

was added up as the container power. Although Piraghaj et

al. calculated the server power by the CPU utilization of

containers on VMs, they did not focus on the container power

estimation [2].

III. POWER ESTIMATION OF CONTAINERS AND VMS

Fig. 1 is the overall framework of our model. First, we

elaborate the principle of VM power estimation using the

decision tree in Section III-A. After the decision tree in Fig.

1 has been trained, we use it for further power estimation.

When new data arrive, we sum the feature vector of the same

type of VMs (e.g., VM.medium in Fig. 1) and concatenate

the feature vectors of all VM types in stage 1, as explained

in Section III-A. We can find the corresponding leaf node

in the light of the split conditions and record the leaf node’s

model parameters in stage 2. After that, models corresponding

to each VM (type) can be accessed. The container’s power

can be estimated by substituting the features of the container

running on the VM for the corresponding features of the VM

type in the model. The container power estimation process of

stage 3 is put forward in Section III-B.

A. Type-based VM Power Estimation

In a data center, the power of physical servers can be

measured by Power Distribution Units (PDU) or power meters,

but the power of VMs and containers cannot. Our model’s

main idea is establishing a relationship between the physical

server power and the relevant features of the VMs running

on the server and then applying the model to the containers

running on the VMs.

In physical servers, the leading cause of power consumption

is the operation and management of VMs. When there is no

VM running, the server will also consume power, which is

called idle power Pidle. Therefore, the power of the physical

server Pser is equal to Pidle plus the dynamic power Pdyn

(the total power generated by all VMs on the server).

However, we cannot simply model each VM due to the

dynamic scheduling of VMs on the physical servers. Retrain-

ing when new VMs come or old VMs leave would result in

more power consumption and longer waiting time of the power

estimation, contrary to the original purpose of saving power.

By looking up the products providing by Cloud Service

Providers (CSP)1, we notice that VM types (or called VM

configurations) are usually fixed. For the same type of VMs

on the same server, the power of VMs is the same in case the

feature vector of the VMs is the same.

For each VM on the server, we assume that the acquired

VM feature vector of the j-th VM belonging to the i-th VM
type is Xij . According to the paper [9], we can establish a

linear model between the VM’s features and power. Based on

the above discussion, Pdyn can be expressed as follows,

Pdyn =

m∑
i

ni∑
j

PVMij =

m∑
i

ni∑
j

(
WT

i Xij + bi
)

=
m∑
i

WT
i

ni∑
j

Xij +B =
m∑
i

WT
i Xsum

i +B

= WT
allXall +B,

(1)

where m is the number of VM types on the server, and

ni is the number of VMs belonging to each VM type. Wi

and bi represent the weight vector and the bias term of

the i-th VM type, respectively. B is the sum of all VMs’

bias terms. Xsum
i is the sum of feature vectors of all VMs

belonging to the i-th VM type. Wall = [W1, · · · ,Wm] and
Xall = [Xsum

1 , · · · , Xsum
m ] represent the concatenation of all

VM types’ weight vectors and the concatenation of all VM

types’ feature vectors, respectively.

According to (1), Xsum
i means we can regard the feature

vectors’ sum of the same type of VMs as a single feature

vector to train the model. To ensure the accuracy of the

following container power estimation, the weights in Wi and

the bias bi should be non-negative. When the weight value of
one feature is negative, it means the component’s operation

decreases power. Nevertheless, it is not realistic. Besides, the

meaning of the bias is the idle power of the VM (When all

values in Xij are zero), so the bias bi should be non-negative.
In order to make servers more power-efficient, many hard-

ware manufacturers have introduced power-saving technolo-

1https://aws.amazon.com/ec2/instance-types/
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gies, such as Intel SpeedStep [17], an implementation of

Dynamic Voltage Frequency Scaling (DVFS) [18]. The ap-

pearance of these technologies makes the relationship between

server power and features nonlinear, which degrades original

linear model performance.

We observe that as the number of full-load physical cores

(Intel Core i5-6500) with Intel SpeedStep enabled increases,

the increment of power consumption becomes smaller. The

power of the server increases 21W from the idle state to

the single-core full-load state, while the power of the server

increases about 10W for the next several cores. The foremost

cause of this phenomenon is, in the idle state, the server will

sleep or shut down some components (such as the LLC, core

clock, etc.) to save power. As a result of the recovery from

the idle state to the working state, these components need

to be reenergized, resulting in a nonlinear change of power.

However, these component features causing nonlinearity are

difficult to obtain, and the features are different under different

architectures.

Considering that this phenomenon was also observed from

Intel Xeon E5-2609, we decided to employ a piecewise linear

model to solve the nonlinear relationship between power and

features. Inspired by the paper [19], we adopt the decision tree

for more accurate splitting.

The structure of our model is similar to the regression tree,

but each leaf node stores Wall and B of (1). The structure

of this tree is shown in stage 2 of Fig. 1. The information

stored on the branch node is the split feature, the split point

and two children. When the data divided into a leaf node, a

linear model is trained and evaluated.

We adopt two pre-pruning strategies to avoid overfitting and

accelerate the training process. The first is the error decrease

threshold τ . For each feature c, we sort all distinct values from
small to large and select the bisection point of two adjacent

values as the optional split point t. For each optional split
point t, we evaluate the test errors of two children’s models
by training and testing the linear models under the two subsets

split by the split point and summimg the errors of two children

up. If the decrease of error is more than the threshold τ after
splitting, then this pair of split feature and the split point (c, t)
will be an alternative. After all split points of all features are

traversed, we consider the pair of split feature and split point

(cbest, tbest) that has the smallest error as the best option. If
none of the (c, t) can reduce the error beyond the threshold
τ , then the node will not be divided and will be set as a leaf
node to train the model. The second pre-pruning strategy is the

minimum subset size γ. When models on leaves are trained in
too small data sets, it is not conducive for the linear model to

learn the real data distribution. Consequently, we stipulate that

when the size of the divided subsets is less than the threshold

γ, we will not add this split pair into the alternatives.
One of the problems with the selection of split points is

that it will take much time to traverse these split points when

there are many features, and each feature has a lot of distinct

values. It will result in slow tree generation, which is contrary

to our intention of fast response to provide power information

for scheduling. Our solution to realize fast training is rounding

the normalized values of split points to a specific floating-point

precision (e.g., 10.2345’s floating-point precision is 4) while

ensuring the model’s accuracy which is illustrated in Section

IV-D. Parallel computing can also be adopted for a shorter

training time.

B. Container Power Estimation

Considering that a container can be regarded as a group of

processes running on the host machine [20], two prerequisites

need to be satisfied for directly using the VM power model for

containers running on the VM. The first is that the acquired

container features can correspond to the features of the VM

one to one. The other one is that the sum of containers’

feature value should not exceed the VM’s feature value at the

same moment. Due to the interdependence between features

[10], the bias term also represents the power consumed by

containers. Considering the power contribution of CPU usage

is much higher than the other features [19], we break the bias

sum B down into the bias of each container by calculating

the ratio of each container’s CPU usage to the sum of all

containers’ CPU usage. Therefore, the power of a container e
in a particular VM type can be estimated as follows,

Pcontainere = Wz
TD +

xcpue∑h
r xcpur

B, (2)

where Wz is the weight vector of the z-th VM type corre-

sponding to the VM in which the container e is located. D is

the feature vector of the container corresponding to the feature

vector of the VM. h is the number of containers on the server,
and xcpur

represents the CPU usage of the r-th container.
This model realizes the power estimation of containers on

VMs by cleverly using the VM model to estimate the power of

the container to avoid the more massive fitting error stemming

from twice modeling.

IV. EXPERIMENTS

A. Experimental Setup

To simulate the environment of data centers, we built an

experimental environment of OpenStack. There is an Open-

Stack controller node, an OpenStack compute node (Intel Core

i5-6500 CPU, 2*4G DDR4@2400 MHz, 1TB HDD) and a

monitor node. The monitor node collects the PDU data of the

compute node through a serial line at a frequency of 1Hz (once

per second). We deployed a collector called collectd [21] on

the compute node, which can be used to collect OSM and

PMC of the compute node, as well as to read these metrics

of VMs through the hypervisor layer. The container’s data are

mainly obtained by executing the command docker stats
of Docker (Docker is one kind of container). The sampling

frequency of collectd and docker stats are also set to 1Hz.

For the features of collected data, we choose the most

common counters in OSM, with CPU usage, memory usage,

hard disk read/write bytes, and network interface receive/send

bytes. Due to the contribution of hard disk read bytes and

hard disk write bytes to power is the same [9], so we add
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these two features together as one feature. We adopted OSM

rather than PMC because counters in OSM are easy to collect

on any system, even on containers running on the VMs. In

contrast, counters in PMC (such as unhalted cycles) cannot

be collected in such virtual environments. Since network IO

tasks are not involved in PARSEC, this paper does not take

network interface receive/send bytes as the model features in

the experiments to simplify the model. In other tasks involving

network IO, these two features should be taken into account.

The benchmark we used in our experiments is PARSEC

v3.0 [22], as it is multi-threaded and diverse. This version of

the suite contains 13 emerging programs that can be used to

simulate CPU-intensive, memory-intensive, and IO-intensive

workloads in the data center.

We deployed two VMs with two cores, 2G memory, and

50G hard disk on the compute node to run the benchmarks.

For each VM, the workloads in PARSEC were run 50 times

in a Docker container with a single thread and dual threads,

respectively. Besides, we also ran a Docker container for the

PARSEC with dual threads in each VMs at the same time to

cover the situation where most of the resources were used,

which represents 4-core load on the physical machine. We

randomly divided the runtime data of each run into training

sets (70%) and test sets (30%), and then spliced the training

sets of all runs to obtain a whole training set of all workloads

in PARSEC.

The evaluation metric we use in the experiments is Nor-

malized Root Mean Square Error (NRMSE). The specific

calculation equation is as follows,

NRMSE =

√
1
v

∑v
i (yi − y′i)

2

σ
, (3)

where yi represents the measured value, and y′i represents the
output value of the model. v is the number of samples, and σ
is the standard deviation of all measurements.

B. Evaluation of VM Power Estimation

We first choose the least-squares linear model as a compar-

ison, which is the most common power estimation model [8]–

[10]. Secondly, based on observation, we segment the linear

model with the case of {single-core full load, dual-core full
load} as the split points, dividing the original linear model into
the three-segment linear model. Consequently, the piecewise

linear model is used as the second comparison model.

We choose the regression tree model in CART [23] as

the third comparison model. Although the regression tree

is selected as a comparison model, it does not have the

capability of VM power estimation. Because its leaf node

stores only a value, and the value cannot be directly used

as the power estimation for a single VM, not to mention the

power estimation of containers.

In the model we proposed, we assign the minimum subset

size γ to 1% of the training set size. For the small training

set, we stipulate that γ should not be less than 30. We assign
the minimum error decrease threshold τ to 20.

We respectively tested the four models on the whole test set

of all workloads and test sets of each workload. Finally, the

comparison results of the models are shown in Table I.

TABLE I
PERFORMANCE (NRMSE) OF MODELS ON ALL WORKLOADS

Workload Name
(Intensive Type) Linear Piecewise

Linear
Regression

Tree
Our

Model
all workloads 0.771 0.768 0.453 0.396

blackscholes (CPU) 0.951 0.917 0.588 0.541
bodytrack (CPU) 0.887 0.865 0.725 0.709

canneal (CPU+Mem) 4.214 4.198 2.050 1.272
dedup (Mem+IO) 2.010 1.977 1.295 1.402
facesim (CPU) 0.919 0.916 0.378 0.262
ferret (CPU) 0.698 0.720 0.379 0.331

fluidanimate (CPU) 0.568 0.568 0.192 0.165
freqmine (CPU) 0.381 0.391 0.263 0.231

raytrace (CPU+Men) 0.574 0.587 0.858 0.602
streamcluster (CPU) 1.184 1.223 0.456 0.348
swaptions (CPU) 0.714 0.730 0.180 0.209
vips (CPU+IO) 1.454 1.433 0.876 0.807
x264 (CPU+IO) 1.169 1.152 0.650 0.595

On the test set of all workloads, our model’s estimation

error is smaller than the other three models, indicating that our

model performs better than other models on most workloads.

While the piecewise linear model has an improvement on the

linear model, the improvement is not obvious, and it even

drops a little on some workloads (such as ferret, freqmine,

etc.). It reveals that the split points set manually based on

core full-load states are not accurate, and the piecewise model

may not fit the optimal power curve.

As shown in Table I, all models are not ideal under the

workloads of canneal and dedup, and their NRMSE is above

1.0. Especially on the workloads of canneal, the NRMSE

of the linear model and the piecewise model peaks above

4.0, which needs further study. We omit the box plot of all

workloads’ power due to space constraints, but we observed

that the power ranges of the canneal and dedup are smaller

than other workloads with the same number of processes. It

is partly due to the type of workloads. Based on Table I, we

can find that the workloads with excellent performance are

mostly simple CPU-intensive workloads, and the dependencies

between components that need to be represented by PMC are

similar on these workloads, so they all have good performance.

However, the dependencies between different components of

memory-intensive and IO-intensive workloads are quite dif-

ferent from those of CPU-intensive workloads, resulting in

large errors of power estimation. After comparing the power

estimated by four models with the measured power, we found

that the linear model is underfitted, and our model is more

accurate than the linear model in most cases.

C. Evaluation of Container Power Estimation

With the VM power model established, we can estimate

the container-level power. In Section III-B, we explained that

the container can be regarded as a group of processes on

the VM. The features of the container can be substituted
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Fig. 2. The evaluation results of Dockers.

for the corresponding features of VMs in the VM model to

estimate container power with the two prerequisites mentioned

in Section III-B satisfied. Fig. 2 shows the evaluation results

of containers on two VMs.

The line at the top of Fig. 2 is the power curve of the

physical server. The bottom area represents the server’s idle

power, which is about 16W on the experimental machine. The

middle two areas correspond to the power values of the Docker

on VM 1 and the Docker on VM 2 respectively estimated by

the VM model. To simplify the representation, we color the

different workloads’ Dockers in the same VM with the same

color (such as workloads before and after 160s).

Although the two curves on the top of Fig. 2 are not entirely

fit, the overall trends are the same. The main reason for the

gap between Docker power and the physical machine power

is when Dockers are running, one part of the VM power

generated by the VMs in the process of scheduling Dockers is

not reflected by Dockers’ features. This part of power is not

counted as the power generated by the containers in our model.

Moreover, the gap is partly due to the power generated by the

physical machine itself, such as the OpenStack’s compute node

survival detection, which is not included in the idle power.

We can also find that the sum of the idle power and the

containers’ power may exceed the physical machine’s power.

Although the power of the physical machine fluctuates slightly,

it can be found that the container power of the interval [5,80]

and interval [80,160] in Fig.2 is the same when Dockers are

running the same workload. Moreover, the server’s overall

mean power is still relatively consistent with the sum of the

container power. Therefore, the proposed model can estimate

the power of the containers running on the VMs well.

D. Training Time and Floating-point Precision

In Section III-A, we mentioned that when selecting the

best split points, we can reduce the time of traversing the

split points by rounding the floating-point precision of data,

to reduce the time of generating tree. Therefore, in this part,

we experiment with the condition that the minimum subset

size γ and the error decrease threshold τ are unchanged to
reveal the influence of split point precision on the evaluation

performance and training efficiency.

Fig. 3 is a figure of the relation between the tree generation

time (X-axis) and the error of power estimation on the test set

Fig. 3. Model performance and training time on different floating-point
precision.

(Y-axis) with the total data volume of 316,590 when floating-

point precision changes from 2 to 6. It can be seen that the

overall trend of error is downward as floating-point precision

increases while training times double. However, in some cases

(such as when the precision is 3 or 5), the performance is

worse than the previous one.

Although the overall trend of error is decreasing, we should

consider whether it worth spending too much training time

for little improvement. For example, it is probably not worth

changing the precision from 4 to 6 to spend almost ten

additional hours for a 1% decrease in NRMSE. Therefore,

choosing 4 as the initial floating-point training precision is

reliable with relatively high accuracy and acceptable speed.

However, during the actual estimation, if the error exceeds a

certain threshold due to the appearance of other task patterns

not in the training set, 2 can be set as the floating-point

precision to retrain the model. The new trained model can

quickly reduce the power estimation error on tasks with other

patterns by replacing the old model. Retraining the model with

a short time alleviates the delay of scheduling requests.

V. CONCLUSION

In this paper, we propose a new container power estimation

model by establishing a fast-training piecewise linear model

between the VMs’ features and the physical machine’s power.

The model combines good interpretability of linear regression

and decision tree. Regarding a container as a process group

of the VM, the container features are substituted into the

VM model to realize the power estimation of the container

on the VM. We test the performance of our model on 13

workloads of PARSEC and compare it with several models.

Our model shows remarkable performance improvement on

most workloads. Meanwhile, the power of the containers can

be estimated as expected.

The major problem of our model is that the linear model

does not reveal the dependencies between counters in OSM

on different types of workloads. As a result, it cannot achieve

outstanding performance on all workloads with a single train-

ing. Therefore, in future work, we will study the dependencies

between these features to propose a more generalized power

estimation model.
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