®

Check for
updates

LogGAN: A Sequence-Based Generative
Adversarial Network for Anomaly
Detection Based on System Logs

Bin Xia!, Junjie Yin', Jian Xu?, and Yun Li'(®

! Jiangsu Key Laboratory of Big Data Security and Intelligent Processing,
Nanjing University of Posts and Telecommunications, Nanjing, China
{bxia,liyun}@njupt.edu.cn
2 School of Computer Science and Engineering,

Nanjing University of Science and Technology, Nanjing, China
dolphin.xu@njust.edu.cn

Abstract. System logs which trace system states and record valuable
events comprise a significant component of any computer system in our
daily life. There exist abundant information (i.e., normal and abnormal
instances) involved in logs which assist administrators in diagnosing and
maintaining the operation of the system. If diverse and complex anoma-
lies (i.e., bugs and failures) cannot be detected and eliminated efficiently,
the running workflows and transactions, even the system, would break
down. Therefore, anomaly detection has become increasingly significant
and attracted a lot of research attention. However, current approaches
concentrate on the anomaly detection in a high-level granularity of logs
(i.e., session) instead of detecting log-level anomalies which weakens the
efficiency of responding anomalies and the diagnosis of system failures.
To overcome the limitation, we propose a sequence-based generative
adversarial network for anomaly detection based on system logs named
LogGAN which detects log-level anomalies based on the patterns (i.e.,
the combination of latest logs). In addition, the generative adversarial
network-based model relieves the effect of imbalance between normal and
abnormal instances to improve the performance of capturing anomalies.
To evaluate LogGAN, we conduct extensive experiments on two real-
world datasets, and the experimental results show the effectiveness of
our proposed approach to log-level anomaly detection.

Keywords: Anomaly detection - Generative adversarial network -
Log-level anomaly - Negative sampling

1 Introduction

Anomaly detection is an important task in protecting our daily life from those
intended or unintended malicious attacks such as the network intrusion, mobile
fraud, industrial damage, and abnormal condition of system [3]. However, with
© Springer Nature Switzerland AG 2019

F. Liu et al. (Eds.): SciSec 2019, LNCS 11933, pp. 61-76, 2019.
https://doi.org/10.1007/978-3-030-34637-9_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34637-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-34637-9_5

62 B. Xia et al.

the rapid development of computer science, systems and applications become
increasingly complex which makes anomalies diverse and non-trivial to be
detected even by human beings. Except for the intended malicious attacks,
unknown bugs and errors which are seemingly controllable but caused by non-
artificial reason in online systems damage the secure and reliable operating envi-
ronment. Therefore, the effectiveness and efficiency of anomaly detection have
become a big challenge for the further development of information-based society.

Currently, the automated generation of logs is an indispensable component
of any large scale system. System logs trace every status of the system and
record each critical event in detail to assist administrators in diagnosing bugs,
failures, and errors of systems. Therefore, the density of arrival logs and the
description of logs directly determine the value of the quantity of knowledge for
improving the performance of running systems [9,15]. For example, if arrival
logs are extremely dense, it is a challenge to analyze the dependency between
events due to the concurrency of logs. Likewise, if the description of logs is col-
loquial and obscure to represent the state of a system, it is non-trivial to trace
the workflows. Figure 1 illustrates the arrival frequency of system logs in prac-
tical scenarios, where Fig. la shows the logs generated by 203 nodes during 2
days in HDFS and Fig. 1b illustrates the logs generated by 1 node during 215
days in BlusGene/L. Observed from Fig. 1, the peak frequency of arrival logs
is 198,878 /min and 152,929/hour for HDFS and BGL, respectively. In addition,
the number of normal instances is much more than that of anomalies, and gen-
erally, anomalies are unlabeled. Therefore, such an extremely frequent arrive of
unlabeled logs results in a significant challenge to the prompt response and the
precise diagnosis.
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Fig. 1. Arrival frequency of system logs in the real-world datasets

To overcome the challenges mentioned above, researchers take a lot of efforts
on the anomaly detection based on system logs. The proposed approaches
are mainly categorized into the supervised, semi-supervised, and unsupervised
strategy based on the availability of labeled data (i.e., normal and abnormal
instances). Most of these approaches have good performance in detecting anoma-
lies based on diverse system logs. However, there exist two problems in restricting
the further development of system diagnosis [1,11-13]. First, these approaches
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detect session-level anomalies where a session contains many logs and is divided
base on some rules (e.g., period, transaction, and node). In other words, the
session including abnormal logs will be detected, however, the abnormal logs
cannot be located in the session. Therefore, administrators need to diagnose
the workflows in the session which is a non-trivial task. Second, the anomaly
is not alerted until the logs are traversed in the session. In other words, the
anomaly cannot be detected and responded efficiently when the abnormal log is
appearing. This two problems significantly limit the effectiveness and efficiency
of system diagnosis.

In this paper, we cast the task of anomaly detection as a pattern-based
sequential prediction and propose an LSTM-based generative adversarial net-
work to distinguishing upcoming abnormal events named LogGAN based on
temporal system logs. First, we exploit a customized log parser to extracting the
structured information (i.e., timestamps, signature, and parameters) and trans-
forming each log into an event. Second, the combinations of events (i.e., pattern)
and the corresponding upcoming event are collected from temporal system logs
using the sliding window. The collected pairs of patterns and events are utilized
to construct real training dataset. LogGAN consists of two major components:
(1) generator and (2) discriminator. The generator tries to capture the distri-
bution of real training dataset and synthesizes plausible instances (i.e., normal
and abnormal data), while the discriminator aims to distinguish the fake ones
from the dataset which is built using the real and synthetic data. Finally, the
fully-trained generator is applied to detect whether the upcoming log is nor-
mal or abnormal based on the latest events. According to the game setting of
anomaly detection, the problem of the imbalance between normal and abnormal
instances can be relieved by generating ‘real’ anomalies to supply the real anoma-
lies in the training set. In addition, the LSTM-based generator identifies whether
each upcoming log is normal or abnormal, which efficiently responds alerts of
anomalies and effectively assists administrators to diagnose workflows, instead
of detecting abnormal sessions including anomalies. To the best our knowledge,
this is the first attempt to apply a game setting (i.e., adversarial learning) for the
anomaly detection based on system logs. Our contribution can be summarized
as below:

— A generative adversarial network is proposed to relieve the problem of imbal-
ance between normal and abnormal instances while improving the perfor-
mance of anomaly detection.

— An LSTM-based detector promotes the efficiency of responding anomalies
and marks anomalies of logs instead of detecting session-level anomalies.

— Extensive experiments are conducted to evaluate the effectiveness of LogGAN
based on two real-world datasets.

2 Related Work

Generally, the techniques of anomaly detection (i.e., outlier detection) are cat-
egorized as supervised, semi-supervised, and unsupervised anomaly detections.



64 B. Xia et al.

In this section, we will briefly introduce some popular anomaly detections in
each category of techniques.

2.1 Supervised Anomaly Detection

Supervised anomaly detections operate under two general assumptions: (1) the
labels of normal and abnormal instances are available; (2) the normal and abnor-
mal instances are distinguishable given the feature space. Chen et al. proposed a
decision tree-based approach to detecting the actual failures from large Internet
sites (i.e., eBay) based on the temporal request traces [5]. The decision trees
simultaneously handle the varying types of runtime properties (i.e., continuous
and discrete variables). Therefore, the proposed approach was widely used in
many practical scenarios. Bodik et al. proposed a fingerprint (i.e., vector) to
effectively demonstrate the performance state of systems and implemented a
regularized logistic regression-based method for selecting the relevant metrics to
build the appropriate fingerprints [1]. The anomalies can be precisely identified
using the fingerprints which summarize the properties of the whole data center
(e.g., CPU utilization). Liang et al. employed several classifiers (e.g., SVM and
nearest neighbor) to detecting the failures in the massive event logs which were
collected from the supercomputer IBM BlueGene/L [10]. Similar to Bodik et al.,
they also derived the specific combination of features to effectively describe each
event log for improving the performance of classification tasks, which demon-
strates that the representation of normal and abnormal logs is significant. The
supervised methods have a quick test phase for the online detections, how-
ever, the extreme dependency on the quality of labels limits the application
scenarios [18].

2.2 Semi-supervised Anomaly Detection

The semi-supervised anomaly detection operates under the assumption: given
the feature space, the normal samples are located closely while the anomalies
are far from the clusters of normal ones [3]. The representative of the semi-
supervised model is the nearest neighbor-based techniques which can be cat-
egorized as (1) distance-based neighbors, and (2) density-based neighbors. To
address the problem of the high-dimensional feature space, Zhang et al. proposed
a High-Dimension Outlying subspace Detection (HighDOD) to searching for the
optimal subset of features to represent outliers [20]. Due to the subset of features
(i.e., low-dimensional data), the Euclidean distance is capable of describing the
actual distance between normal and abnormal instances. Besides distance-based
approaches, the density-based method is also useful to distinguish anomalies. To
improve Local Outlier Factor (i.e., a type of popular measure to calculating the
density given the instance), Chawla et al. proposed a new measure called Spatial
Local Outlier Measure (SLOM) [4,14]. Du et al. proposed LSTM-based anomaly
detection and diagnosis framework named DeepLog based on unstructured sys-
tem logs [6]. DeepLog analyzes and detects anomalies using the log key and the
parameter value vector to help administrators for diagnosing the system errors
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based on workflows. DeepLog is trained based on the normal patterns in sys-
tem logs and provides a way to be incrementally updated using upcoming logs;
therefore, DeeplLog is categorized as semi-supervised anomaly detection. Tuor
et al. also proposed a recurrent neural network-based approach to detecting
abnormal instances where the proposed model considered system logs as sen-
tences in language models [16]. Compared to the supervised anomaly detections,
semi-supervised techniques do not extremely rely on the labeled data and the
distribution of observed instances and outperform the unsupervised approaches
generally. However, the selection of measuring distance is significant for the per-
formance of semi-supervised anomaly detections.

2.3 Unsupervised Anomaly Detection

The unsupervised technique is the most popular approach in the domain of
anomaly detection because this technique still works even if the label of data is
unknown. This characteristic of the unsupervised technique satisfies the assump-
tion that anomalies are generally rare and unknown in practical scenarios. Lin
et al. proposed a cluster-based approach (i.e., LogCluster) to addressing the log-
based anomalies detection problem based on the data from Microsoft service
product teams [11]. LogCluster aims to cluster the historical and upcoming logs
using the knowledge base, and engineers only need to distinguish several logs (i.e.,
events) in each cluster that can identify the type of anomalies which is located
in the same cluster. Therefore, it is not necessary to obtain the label of logs, and
the similarity between logs is more essential to operate LogCluster. Lou et al.
proposed a novel anomaly detection approach to identifying program invariants
based on the unstructured console logs [13]. The proposed approach concen-
trates on structuring the free form description in console logs and mining the
meaningful anomalies after grouping the structured logs with parameters. Differ-
ent from the traditional anomaly detections which construct models fitting nor-
mal instances and distinguish instances that do not conform to the constructed
model, Liu et al. proposed a novel concept that explicitly isolates abnormal
instances [12]. The proposed isolation forest (iForest) is capable of addressing
the high-dimensional problems using an attribute selector (i.e., the characteristic
of the decision tree). In addition, iForest achieves good performance even if there
are no anomalies occurred in the training set. Xu et al. proposed a PCA-based
anomaly detection and visualized the promising results using a decision tree [19].
The main contribution of this work is that the source code is considered as a
reference to parse console logs for improving the quality of structured data and
the quality data will improve the representation of console logs (i.e., extracted
distinguishable features). The advantage of unsupervised techniques is that the
approaches are independent with the label information of the training set. The
disadvantage of unsupervised techniques is that expert knowledge is still needed
to utilize unsupervised approaches for detecting anomalies in practical scenarios,
although the techniques reduce the massive workloads.



66 B. Xia et al.

3 Method

In this paper, we propose a generative adversarial network-based anomaly detec-
tion approach named LogGAN which improves the performance of identifying
anomalies in an adversarial setting. Figure 2 illustrates the overview of LogGAN.
The main modules of LogGAN are categorized into three parts:
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Fig. 2. The framework of anomaly detection generative adversarial network

— Log Parser: is the module to parsing unstructured logs into structured logs (or
events) which are considered as the minimum units for the following machine
learning-based techniques.

— Adversarial Learning: is the module to training the LSTM-based anomaly
detection model based on the timestamps, signatures, and attributes
extracted from structured log.

— Anomaly Detection: is the module to detecting and diagnosing anomalies
using the LSTM-based model and incrementally update the model based on
the upcoming logs and users’ feedbacks.

In the following parts of this section, we will introduce each part of LogGAN in
detail.

3.1 Log Parser

In the module of log parser, the original unstructured logs are converted into the
structured logs. The log parsing, which is considered as the common preprocess-
ing of unstructured logs, is the significant part in the majority of log analysis
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tasks. Many approaches were proposed to generate events, which are extracted
and summarized based on raw logs, for automated performance analysis of sys-
tem [8,15]. These template-free methods are capable of parsing logs using statis-
tical approaches. However, the performance of these methods is not convincing,
because the formations of logs from different systems are chaotic and that is
nontrivial to be captured. Therefore, in this paper, we first divide the unstruc-
tured logs into several parts (e.g., datetime and content) using the corresponding
template, then further extract meaningful information (i.e., event) from these
parts [21]. Generally, the event consists of three major components: (1) times-
tamps, (2) signature and (3) parameters. To make readers fully understand the
process of log parser, Fig. 3 illustrates the examples of parsing unstructured logs
from two real-world systems (i.e., HDFS and BlusGene/L), respectively.

HDFS Logs BlueGene/L Logs
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Fig. 3. Example of log parser to converting from logs to structured entities

Note that, HDFS and BlusGene/L are different in the system structures and
workflows, hence the parsed structures from the first step are also different.
Observed from Fig. 3a, the timestamps, signature, and parameters are extracted
exactly where the signature is a static content that presents a type of logs and
the parameters record dynamic parts in each log. The three-tuple representation
(i.e., timestamps, signature, and parameters) effectively describes the status of
each event which provides administrators with sufficient references to diagnose
the broken-down system.

3.2 Adversarial Learning

In this paper, we cast the task of anomaly detection as a set of adversarial learn-
ing and propose an LSTM-base generative adversarial network named LogGAN
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to improve the performance of identifying anomalies. The concept of the gen-
erative adversarial network (GAN) was proposed by Goodfellow et al. where
GAN considers a machine learning problem as a game between two models (i.e.,
generator and discriminator) [7]. The generator (G) captures the distribution of
real samples and generates plausible samples which are similar with real sam-
ples in the representation of features, while the discriminator (D) tries to identify
whether the upcoming sample is real or synthetic one for improving the quality of
samples generated by G. The iteration repeats until both G and D converge, then
G is capable of generating ‘real’ samples. This game setting of machine learning
exactly addresses a significant problem in anomaly detection: the overwhelming
ratio of normal and abnormal instances. The fully-trained G can capture the
distribution of anomalies which further improves the performance of detecting
whether the upcoming log is normal or abnormal.

The original GAN, which is utilized to generate continuous variables of
images, do not match the scenario of predicting discrete event ID (i.e., sig-
nature) [7]. Therefore, we propose LogGAN to independently generate the con-
tinuous probability of each upcoming event instead of using the softmax layer
to output the probability distribution of overall events [2,17]. In details, given
an observed set of temporal events S = {e(1),€(2),...,€(5)} from parsed sys-
tem logs and a set of event E = {e1,eq,...,en} where e; presents a signa-
ture of the j;; event, the task of LogGAN is to predict whether the upcom-
ing event (i.e., log) is normal or abnormal based on the context combinations
from the set C = {¢1,co,...,cn} where ¢; demonstrates the iy, combination
(e(k—2) €(k—1)» €(k)) Within a 3-size sliding window. As a game setting, we exploit
Long Short Term Memory network (LSTM) for both G and D where G aims to
generate fake normal and abnormal instances and D tries to distinguish whether
the instance is real or fake. For G, we utilize a random noise z and a combi-
nation ¢; as the input of LSTM! while the output is an m—dimensional vector
representing the independent occurring probability of each event in E. For D,
we utilize a combination ¢; as the input and an m—dimensional vector of the
independent occurring probability as the parameter? of LSTM while the output
is whether the m—dimensional vector is real or fake sample under the contex-
tual combination c¢;. Therefore, the objective function of G and D is defined as
follows, respectively:

JG—IHIDZ a~p,[log(l — D +§:

i=1 j=1
n 1 m

= mi 1 1-D :: i _ c c; )

Y0801 = Dl + 3 (e = )

! Learned event embedding is used to demonstrate each event.

2In D, we cast the combination ¢; as the input of LSTM and LSTM directly
outputs the hidden layer without any manipulation. Then, we concatenate the
m—dimensional vector with the hidden layer as an input of a two-layer full Con-
nected neural network which outputs whether the m—dimensional vector is real or
fake as a binary classification.

(1)
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n
JP = min — > (Eewp,..[log D(e[c)] + Eenp, [log(1 — D(&[c))])
i=1
n (2)
= min— 3 (log D(ec,[cs) +log(1 = D(€%[e))),
i=1
where 6 and ¢ is the parameter of G and D, respectively. Note that, €, = e[, ©oc,
is an m—dimensional vector representing the independent occurring probability
of each event in E (i.e., input of D), where e, is the output of G and © is
the element-wise mask multiplication. og,, which is an m—dimensional observed
vector (i.e., o.,; stands for the observation of e; where o; € {1,0} represents
whether e; is an upcoming event next to c; or not), is used to filter the occurring
probability of unobserved events in el . This setting assists LogGAN to only
update the gradients based on the loss of observed events (i.e., both normal and
abnormal instances) and avoid the disturbance generated by the unobserved one.
In addition, during the process of updating G, we apply a reconstruction error
(i.e., Z;“:l (ec,j—€c.j)?) to help G capture the actual distribution of training data
for further improving the performance. Algorithm 1 shows the overall algorithm
of LogGAN in detail.

Algorithm 1. The algorithm of LogGAN

Input:

Gy: the generator G,

Dy the discriminator D,

B: the size of minibatch,

N: the number of maximum iteration.
Output:

Gl+: converged generator G.

1: Initialize Gy and Dy with random weights 6 and ¢.

2: Sett«— 0

3: repeat

4:  for G-steps do

5: Sample B combinations of events as a minibatch Mg

6: Generate corresponding fake instances using generator Gy and train Gy
7 Update Gy by 0" «— 0 — %VgJG

8: end for

9:  for D-steps do
10: Sample B combinations of events as a minibatch Mp
11: Generate corresponding fake instances using generator Gg
12: Combine the generated instances with sampled real instances and train Dy
13: Update Dy by ¢* « ¢ — £V J7
14:  end for

15:  Updatet «—t+1
16: until LogGAN converges OR t >= N
17: return Gy=.

Negative Sampling: In practical scenarios, given a combination of events, the
possible upcoming events are sparse. In other words, the real event vector (i.e.,
€c,) is more like a one-hot or multi-hot encoding vector which causes the over-
fitting problem. Therefore, we exploit a negative sampling strategy to avoid the
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overfitting problem [2]. During the G-steps, we randomly sample the unobserved
instances according to a specific ratio and set the corresponding position of mask
0c; as 1 for retaining the gradients.

3.3 Anomaly Detection

After completing the training LogGAN, generator G is applied to detect anoma-
lies based on the streaming events from system logs. During the stage of anomaly
detection: (1) the historical and upcoming system logs are transformed into
structured data (i.e., event) via the log parser; (2) the input of G is the com-
bination of several latest events (i.e., several one-hot encoding vectors) and G
generates a corresponding m—dimensional vector representing the independent
occurring probability of each event; (3) a set of normal events is built based
on the generated m—dimensional vector filtered using a predefined threshold
of normal probability in the step 2; (4) the upcoming event is considered as a
normal instance if the event has an intersection with the set of normal events,
otherwise, the event will be alerted as an anomaly.

4 Experiment

In this section, we propose the experiments to evaluate the effectiveness of Log-
GAN on two real-world datasets, and mainly concentrate on the following issues:

— Parameter: We analyze the effect of different parameters on the performance
of LogGAN.

— Session-level Anomaly Detection: The performance of LogGAN on the task
of session-level anomaly detection is compared to that of baselines.

— Log-level Anomaly Detection: The performance of LogGAN on the task of
log-level anomaly detection is compared to the performance of DeepLog.

4.1 Experimental Setup

Datasets: Generally, up-to-date system logs are rarely published and are sensitive
data that describe the detailed information (i.e., business and transaction) about
the deployed large scale system, however, the data collected from own small scale
system hardly show the actual anomalies in practical scenarios. Therefore, we
exploit two real-world datasets (i.e., HDFD and BGL) collected several years
ago which is published for research [21]. HDFS is collected from Amazon EC2
platform where 11,197,705 system logs are divided into 575,139 sessions and
generated by 203 nodes during two days while BGL contains 4,747,963 logs
collected from the BlueGene/L supercomputer system during 215 days. The
detailed information of datasets is shown in Table 1.

Baselines: In the experiments, to evaluate the performance of our proposed
approach, we compare LogGAN with several selected baselines:
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Table 1. The overview of two real-world datasets

System | Start date | Days | Size (GB) | Rate (log/sec) | Messages | Alerts Signatures
HDFS | 2008-11-09 2 1.490G 64.802 11,197,705 | 16,916/575,139 | 29
BGL 2005-06-03 | 215 0.708G 0.256 4,747,963 | 348,698 394

— iForest [12]: is an unsupervised tree-based isolation forest which tries to isolate
anomalies from other normal instances, especially for the imbalanced training
set.

— PCA [19]: is an unsupervised principal component analysis-based anomaly
detection technique which improves the parser of unstructured systems and
visualizes the promising diagnosis of abnormal instances.

— Invariants Mining [13]: is an wunsupervised anomaly detection technique
applied to build the structured logs based on the unstructured description
in console logs.

— LogCluster [11]: is an wunsupervised cluster-based approach to clustering
events extracted from the historical and upcoming logs based on the knowl-
edge base.

— DeepLog [6]: is a supervised LSTM-based deep learning framework which
utilizes LSTM to fit the distribution of normal instances using the log key
and the performance value vector extracted from each log.

In the experiments, we exploit the first 30% of dataset as the training set
while the remaining data as the test set based on time series. In addition, we
will briefly introduce the key parameters of LogGAN for the reproduction of our
model. The size of sliding window determines the capacity of contextual events
to the upcoming log. The larger size demonstrates the more specific contextual
patterns are used to identify anomalies while the smaller size means upcoming
anomalies are determined by the latest events (i.e., the more regular contextual
patterns). The event embedding is used to represent events in the continuous
space. In this paper, we utilize the 3-size sliding window to extracting contex-
tual pattern of upcoming logs. To distinguish normal and abnormal events from
the output of generator (i.e., an m—dimensional vector), we define a threshold
to filtering normal logs. When the occurring probability of a event is below the
predefined threshold, the event is considered as an anomaly based on the con-
textual pattern. In addition, we define the threshold as 0.90 which means the
upcoming log is normal if the appearing probability of the log is 90% based on
the output of generator. The ratio of negative sampling is set as 0.1. The 2-layer
LSTM is applied as the basic model of generator and discriminator in LogGAN.
The dimension of event embedding is set as 200. To keep the correspondence
with DeepLog, in the experiments, we define the accurate identification of true
anomalies as the true positive. Therefore, the metrics (e.g., precision and recall)
demonstrate the performance of detecting anomalies.
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4.2 Result and Discussion

Parameters: Figure4 illustrates the performance of LogGAN within different
settings of parameters including the size of sliding window, the threshold to fil-
tering normal logs, and the layer of LSTM. In this section, we concentrate on
the task of log-level anomaly detection. First, Fig.4a shows the performance
(i.e., Precision, Recall, and Fl-measure) of LogGAN on different sizes of sliding
window (i.e., size 1 to 5). Observed from Fig.4a, abnormal logs are correlated
with the appropriate context of events (i.e., 3-size sliding window). Neither the
concurrence of pair-wise events (i.e., 1-size sliding window) nor the extremely
specific contextual pattern (i.e., 5-size sliding window) is beneficial to identity
log-level anomalies. Second, Fig. 4b illustrates the performance on different set-
tings of threshold to filtering normal logs. Note that, LogGAN has the similar
performance on the threshold from 0.90 to 0.30 while the performance becomes
worse when the threshold is 0.10. In other word, the appearing probability of
normal and abnormal logs largely depends on whether the combination of con-
textual events and logs occurs in the training set. Finally, Fig.4c shows the
performance of LogGAN using different layers of LSTM in the generator and
discriminator. The experimental results demonstrate that appropriately using
deep features (i.e., 2-layer LSTM) is capable of improving the performance of
detecting anomalies.
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Fig. 5. The comparison between DeepLog and LogGAN on log-level anomaly detection

Log-level Anomaly Detection: Figureb illustrates the comparison between
DeepLog and LogGAN on the log-level anomaly detection on BGL. The char-
acteristic of DeepLog is to utilize feedbacks (i.e., false positive samples) from
administrators to update the model incrementally. In other words, DeepLog
aims to learn the whole normal instances including the upcoming ones to detect
anomalies without considering the correlation between normal and abnormal
logs. Any method, which has the strategy of incremental learning, has the bene-
fit of this setting including LogGAN. In this experiment, we concern more about
the generalization ability of model based on the limited training set. Observed
from Fig.5, LogGAN outperforms Deeplog on the task of anomaly detection
based on the same size of training set (i.e., 30%). However, the overall per-
formance of DeepLog and LogGAN is not satisfactory. To further improve the
performance of anomaly detection, we need to extract more meaningful feature
from logs instead of only using the sequential information.

Table 2. The comparison between baselines and LogGAN on session-level anomaly
detection on HDF'S

Method Recall | Precision | F1-score
Invariants miner | 1.000 | 0.084 0.154
PCA 0.346 |0.707 0.465
DeepLog 0.016 10.939 0.032
iForest 0.318 |1.000 0.482
LogClustering |0.362 |1.000 0.532
LogGAN-sess 0.356 |1.000 0.525

Session-level Anomaly Detection: Table 2 shows the performance of baselines
and LogGAN on HDFS dataset. Different from the version of LogGAN used in
the log-level anomaly detection, we propose a session-level version of LogGAN
(LogGAN-sess) in the session-level task. The generator of LogGAN-sess aims to
match a 30—dimensional vector where the first 29 dimensions record the num-
ber of corresponding events appeared in the current session, and the last one
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represents the abnormal score instead of fitting an m—dimensional vector. The
experimental results show that LogGAN-sess outperform other baselines except
for LogClustering. The limitation of current LogGAN-sess is the model only
exploits the statistics of independent event that occurred in the session. How-
ever, the traditional anomaly detection methods concentrate on the concurrence
of several events in the temporal sequence. In addition, the structure of work-
flows is also significant information which describes the normal and integrated
transactions in the system. Therefore, the performance of LogGAN-sess could be
further improved using the statistics of specific patterns (i.e., the combination
of temporal logs).

5 Conclusion

To overcome the limitation of diagnosing log-level anomaly detection, in this
paper, we propose a sequence-based generative adversarial network to detecting
abnormal events among system logs named LogGAN. In practical scenarios, we
consider that the occurring anomalies depend on specific patterns which com-
prise the latest logs and regard specific patterns as the contextual information
of upcoming logs. Due to the benefit of the generative adversarial network, the
problem of the imbalance between normal and abnormal logs is relieved where
LogGAN is capable of generating ‘real’ anomalies for supplying the lack of abnor-
mal logs in system logs. In addition, LogGAN can be transformed into the session
version only to changing the representation of samples without reforming the
overall structure of LogGAN. The experimental results show the effectiveness of
LogGAN on both the tasks of session-level and log-level anomaly detection.

The current LogGAN still has some problems that need to be solved for fur-
ther improvement, and there exist several ideas to extend our work in the future.
First, the current LogGAN has similar structures of discriminator and genera-
tor, and we exploit the generator to distinguish anomalies from system logs. Can
the combination of outputs from discriminator and generator be used to identify
anomalies? Second, only the signature and the temporal information of system
logs are used to train LogGAN in this paper. The parameter of each event and
other meaningful feature need to be considered to precisely describe anomalies.
Third, the diagnosis of anomalies is also an important task which helps admin-
istrators solve anomalies efficiently. Therefore, the root cause analysis (RCA)
should be considered in the process of detecting anomalies.
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