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Abstract—The increasing numbers of the applications and
requirement of cloud computing have made huge power con-
sumption in data centers, which brings the problems of the high
cost and resource waste. This problem attracts significant atten-
tion from academia and industry. A critical approach to solve
this problem is constructing an intelligent energy management
system for data centers. Furthermore, an efficient assessment
and prediction module of power consumption in data centers is
an essential part of the management system. It facilitates cloud
service providers to perform workflow scheduling at the minimal
cost and energy efficiency management with the requirement of
QoS. Since the assessment and prediction of power consumption
correlate, this paper presents a multi-granularity approach for
power consumption prediction in data centers, which combines
multi-task learning with the LSTM network. We first transfer
a multi-granularity power prediction problem into a multi-task
regression problem to assess and predict the power consumption
of data center system maintenance and scheduling operations.
Due to the time requirement for workflow and container schedul-
ing, the prediction interval is 30 seconds. Then we propose
an efficient long short-term memory network for the multi-
granularity prediction. The experimental results show our model
outperforms other prediction models on the real datasets.

Index Terms—Data center, Time series prediction, Energy
efficiency, Power consumption

I. INTRODUCTION

As the development of cloud computing and increasing

numbers of the applications, the data centers have caused

large power consumption. In China, the total number of data

centers is more than 40,000, of which the annual electricity

consumption exceeds 1.5% of the whole social electricity

consumption. The yearly expense for power distribution units

(PDUs) and cooling devices exceeds 20 billion dollars. The

power consumption accounts for half of a data centers total

expense [1] as well as generates much carbon dioxide [2],

which accelerates global warming. Moreover, the problem of

low energy efficiency for data centers cannot be ignored. Gen-

erally, about 15% servers are in idle, and CPU usage of 75%

servers is less than 20%, which has brought the high cost to the

cloud service providers (https://www.zdnet.com/). Therefore, it

is a critical challenge to improve energy efficiency and reduce

power consumption.

Many technologies are applied in data centers to improve

energy efficiency. The most widely used technique is dynamic

voltage and frequency scaling (DVFS) [3], which changes the

voltage dynamically according to processing speed, to reduce

the processor power consumption. Other technologies, such

as live migration [4] and task consolidation, control the CPU

utilization of the servers to reduce the power consumption.

However, these technologies are not enough to improve en-

ergy efficiency due to ignoring the relationship among power

consumption, cloud applications, and platform architectures.
To effectively reduce power consumption and help cloud

service providers to allocate workflows and meet QoS re-

quirements, it is very important to assess and predict power

consumption in data centers accurately [5]. Recently, Google

is devoted to developing a predictive model of power us-

age efficiency (PUE) for large-scale data center and use

DeepMind to improve its energy efficiency [6] [7]. In this

paper, we propose a method to assess and predict the power

consumption in data centers simultaneously. Existing works

treat the assessment and prediction of power consumption

independently but do not explore the correlation. To the best

of our knowledge, our work is the first to address multi-

granularity energy consumption predictions in data centers

from the perspective of multi-task learning. We consider

simultaneously obtaining the power consumption at the next

second power and the average power consumption at the next

period (30 seconds). The next second power prediction can be

thought of as a fine-grained prediction, and the next 30 seconds

power prediction corresponds to a medium-grained prediction.

It is meaningful to assess and predict the power consumption

in data centers. We predict the power consumption of the next

second to assess the power usage state of the data center,

for example, by accurately assessing power consumption to

judge whether the data center runs properly. Due to the time

constraints of workflow scheduling and task management, we

predict the average power consumption of the data center in

the next 30 seconds. We use LSTM and multi-task learning

to predict multi-granularity power consumption because the

two prediction tasks are closely correlated. LSTM fits the

problem because it can iteratively fine-tune for the coarse

prediction and deal with the time dependence of sequential

temporal data well. And multi-task learning is intended to

impose shared knowledge when solving multiple correlated

tasks simultaneously [8].
Our work contributes in the following two ways.

• We define a multi-granularity prediction problem for

power consumption. We set up two power systems where
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different workloads are run to generate power-related

data.

• We construct a multi-task LSTM model to assess and

predict power consumption and compare our approach

with other single task models.

This paper is structured as follows. In Section 2, we

introduce the related approaches and background of the power

consumption prediction and multi-task learning. Section 3

presents the formulation of the multi-granularity power prob-

lem and the framework of the power consumption management

system. Section 4 shows the details of our proposed model.

To validate the advantage and efficiency of our model, we

provide sufficient experimental comparison with other state-

of-art methods in Section 5. We conclude the whole paper

and discuss future work in Section 6.

II. RELATED WORK

Power consumption reduction in data centers is a hot

research topic for decades, much effort has been made to

improve the energy efficiency of data centers. DVFS, dynamic

power management (DPM) [9], power napping [10] and live

migration, saving energy technologies, are widely applied

in data centers. However, a data center consists of many

complex components, such as cooling, power transformation,

information and communication technology (ICT) equipment,

and management subsystem. These technologies mentioned

above are not enough to save much electricity, then researchers

like to model the relationship between power consumption and

characteristic of data centers to reduce the power consumption

effectively.

Some existing study has made efforts in modeling the rela-

tionship between power consumption and performance coun-

ters. The process of these methods is usually divided into three

steps. First, collecting power consumption data and relevant

effective factors, such as performance counters and system

utilization [11] when running applications. Then, the related

parameters are required to be fit to generate the model. Finally,

using the model for power prediction. At the initial time, a

linear relationship between processor power consumption and

multiple performance counters is be found in Bellosa’s power

model [12], which correlates power consumption with perfor-

mance counters at the processor level. Joseph,et al [13] and

Isci, et al [14] proposed detailed analytical processor power

models based on CPU performance counters. However, the

approaches are lack of generality and portability because of the

limited microarchitectural knowledge of a particular processor.

Mantis [15], proposed by Ecomomou, a non-intrusive infras-

tructure for providing fast and accurate full-system power

predictions. Mantis models the linear relationship between

power measured from a wall socket and four distinct utilization

subsystem counters. However, the simple accumulation models

can not describe the power consumption fully and accurately,

becasue the models are based on every component power

accumulated while not all features are added into them.

As cloud data centers continue to grow in size and power

consumption becomes more complex, previous approaches to

modeling the relationship between power consumption and

data center components based on simple physical measure-

ments failed to achieve all the factors, resulting in power

consumption cannot be accurately assessed.

Therefore, the power consumption data has been seen as

a time series to assess and predict in recent years. Much

effort has been made to develop and improve time series

predicting models in many domains, such as electricity de-

mand prediction, financial market prediction, and wind power

prediction. Box and Jenkins firstly proposed ARIMA model in

1970. ARIMA is flexible that it can represent autoregressive

(AR), moving average (MA) and ARMA models. And the

exponential smoothing has many variants: simple exponential

smoothing, Holts exponential smoothing, and Holt-Winters.

Anwar M Y [16] used ARIMA model to predict future

trends in incidence by historical data on the number of

endemic malaria infections in Afghanistan. Mazumdar [17]

used ARIMA and exponential smoothing models to predict

the stability of the data center based on real-time data of

batch workload. Maurizio [18] predicted data center power

consumption with the Holt-Winter method and experiment on

four datasets.

However, these algorithms only take the current feature

values into account, not consider the temporal characteristic

of the time series data. Recently, many methods based on

deep learning are proposed to solve the time series problems.

Li [19] proposed two deep learning-based models: a fine-

grained model and a coarse-grained model with auto-encoder

employed to encode data and also used smoothing to remove

the noise in data. Liu [20] adopt the LSTM neural network

for workload prediction to allocate VM resource. LSTM is a

recurrent neural network architecture, which can be applied

for time series prediction. LSTM can eliminate the gradient

vanishing problem and capture the long-term dependence in

time series [21]. In this paper, we use LSTM based model to

assess and predict the power consumption in data centers. We

are the first to use LSTM and multi-task learning to assess

and predict the power consumption simultaneously.

Multi-task learning [22] utilizes the feature correlations

to model the relationships among related tasks. Multi-task

learning can boost the performance of the tasks by learning

the knowledge sharing [23]. Recent work such as Bayesian

[24] and Max-margin [25], mean to find the feature and

task correlations. Zhou [26] used temporal group Lasso to

capture the intrinsic relatedness among the different tasks

and predicted the disease progression. Power consumption is

not a simple linear mapping function between the power and

components in data centers. Therefore, it is desirable to use

non-linear representation and use multi-task learning to find

the relationships between the assessment and prediction of

power consumption.

In our work, we consider the fine-grained prediction –

predicting the next-second power consumption for assessment

and the medium-grained prediction – predicting the average

power consumption over the next 30 seconds for workflow

scheduling and container scheduling.
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Fig. 1. The overall architecture and workflow of the system under prediction

III. POWER CONSUMPTION SYSTEM PREDICTION AND

MANAGEMENT

In this paper, we study the power consumption based on

the multi-task learning. We formulate two tasks: a fine-grained

problem – power consumption assessment for predicting the

next second power consumption, and a medium-grained prob-

lem – power consumption prediction for predicting the average

power consumption at the period of next 30 seconds. The

two tasks correlate with each other. The real-time power

assessment can evaluate not only the accuracy of the model

but also facilitate the prediction of power consumption. The

two tasks correlate with each other. The real-time power

assessment can not only evaluate the accuracy of the model

we build for the system, but also facilitate the prediction of

the power consumption.

In real data centers, a complete framework consists of IT

equipment, power supply units, cooling equipment, and other

support infrastructures. Cooling equipment, which contains

computer room air conditioners (CRACs), cooling towers and

chillers, is another large power-consumed part in data centers

[27] [28]. In this paper, we consider the power consumption

generated by IT equipment. The paper is indicated to the

assessment and prediction of power consumption. The multi-

granularity module is a vital part of the data center manage-

ment system, as shown in Fig. 1. The module assesses and

predicts the total power consumption of the system, based

on the power data, system status, and workload data. Then

the predicted values of power consumption are sent to the

execution engine optimizer, which monitors the system re-

sources. The execution engine optimizer dynamically deploys

a minimum power consumption scheduling scheme based on

the continuously predicted results.

In our experiments, we build two power systems and the cor-

responding datasets to assess and predict power consumption.

We run the CPU-intensive workload [29] and the URL-request

workloads respectively on the individual system and collect

the datasets for training the model. The dataset includes three

parts: power consumption data, system status, and workload

data. The CPU-intensive power consumption system in Fig.

2(a) consists of a server, a monitor computer, and a PDU.

We dynamically adjust the CPU utilization to make sure

that the server runs in different states to generate power

Fig. 2. The structure of the power consumption management systems. We set
two different systems: the architecture of CPU-intensive power consumption
system (a) and the architecture of URL-request power consumption system
(b).

consumption. The URL-request power consumption system in

Fig. 2(b) contains one more request computer, which sends

HTTP requests to the server. The request is sent at different

rates so that the server runs in different states. Monitor

computer records the system status of the server and power

consumption from PDU per second. We use the two datasets to

train the module for power assessment and power prediction.

These two tasks correlate and share related features. The

execution engine optimizer then selects the best solution from

the multiple candidate plans based on the minimal prediction

values of power consumption. This multi-granularity module

helps cloud service providers perform power management,

workflow scheduling, and container scheduling.

IV. MODEL FOR LSTM BASED MULTI-TASK LEARNING

Most work on the power consumption in data centers is a

single task about workloads. In this section, we elaborate on

our proposed approach for multi-granularity prediction of the

power consumption system. The next second power prediction

is defined as a fine-grained prediction task, while the predic-

tion of the next 30 seconds average power is used as a medium-

grained prediction task. We use LSTM and multi-task learning

to predict multi-granularity power consumption. LSTM can

capture the long-range dependency of the time series, and

multi-task learning is intended to impose shared knowledge

when solving multiple correlated tasks simultaneously.
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A. Recurrent Neural Network

A recurrent neural network (RNN) is used to deal with a

temporal sequence, which is different from the forward neural

network in the hidden layers. Since the hidden layers not only

receive the input but also receive the output of last hidden

layer, the correlations among the data series are generated in

the RNN, which significantly improves the ability to analyze

data.

However, RNN has an inevitable problem that the compo-

nents of the gradient vector will grow or decay exponentially

when the training sequence is very long [30] [31]. Therefore,

the RNN model is not capable of learning well in the long-

dependence series for the gradient explosion and gradient

vanishing.

Long short-term memory (LSTM) network, the variation

of RNN, is proposed to address the difficulty of RNN for

learning the long-term dependent sequence [32]. The LSTM

has a memory cell in the hidden neutron which consists of

three gates: an input gate it, a forget gate ft and an output

gate ot (we define the vectors at the time step t). And the

memory cell is ct, candidate state of the memory cell is c̃t
and the hidden value of the memory cell at time t is ht. The

LSTM transition equations are as follows:

ft = σ(Wf · [xt, ht−1] + bf ), (1)

it = σ(Wi · [xt, ht−1] + bi), (2)

c̃t = tanh(Wc · [xt, ht−1] + bc), (3)

ct = ft ∗ ct−1 + it ∗ c̃t, (4)

ot = σ(Wo · [xt, ht−1] + bo), (5)

ht = ot ∗ tanh(ct), (6)

where xt is the input at the time step t, W is the weight and

b is the bias of each vectors, the entries of three gating vectors

is in [0,1], and σ denotes the logistic sigmoid function.

B. Multi-task LSTM model

We propose a multi-task deep neural network model to deal

with many related tasks. Fig. 3 shows the structure of our

proposed methodology.

We use the shared-layer LSTM model to assess and predict

the power consumption for different workloads introduced in

Section 3. Each task has its separate LSTM layer, and a

bidirectional LSTM layer is set for all the tasks which can

capture the shared information.

In Fig. 3, given two tasks (p, q), h
(p)
t and h

(q)
t represent

the input of the two tasks sequence respectively. The hidden

shared layer receives the input xt and the output of the last

hidden shared layer h
(s)
t−1. The output of the hidden shared

layer h
(s)
t at the time step t consists of two parts: the forward

output
−→
ht

(s) and the backward output
←−
ht

(s).

h
(s)
t =

−→
ht

(s) ⊕←−ht
(s), (7)

where ⊕ represents the concatenation operation.

Fig. 3. The structure of the multi-task LSTM model

The shared hidden layer receives xt and the last output of

hidden shared layer h
(s)
t−1 as its input. Moreover, the hidden

layer h
(s)
t not only sends its output to the next hidden layer

but also transforms the output to the task hidden layer ht.

For each task, a gate is introduced between the task separated

layer ht and task shared layer h
(s)
t as well as between h

(s)
t

and h
(s)
t−1 at task hidden layer at the time step t to decide how

much information to accept.

Therefore, the Eq. (3) is rewrite in the following, for task

p:

c̃t
(p) = tanh(Wc

(p)·[xt, g
(m)h

(s)
t−1]+Wc

(s)·[g(s→p)ht
(s)]+bc

(p)),
(8)

g(p) is the gate between h
(s)
t and h

(s)
t−1 at the hidden layer of

task p and g(s→p) is the gate between the task separated layer

h
(p)
t and task shared layer h

(s)
t :

g(p) = σ(Wg
(p) · [xt, h

(p)
t−1] + b(p)g ), (9)

g(s→p) = σ(Wg
(s→p) · [xt, h

(s)
t ] + b(s→p)

g ), (10)

The LSTM shared layer can capture the correlated representa-

tions for tasks. We use the gate mechanism to decide whether

to accept the information from the hidden shared layers, which

facilitates the interaction between the task hidden layers and

shared layers.

C. Learning

We feed the sequence data to the model and the i-th sample

is denoted as (x
(p)
t , y

(p)
t ) for task p, where the yt is the real

value for the power consumption. And we use ŷ
(p)
t to represent

the output for task p. The parameter set Θ = {W, b} is learned

by using the following loss function:

φ = argminΣ||ŷ(p)t − y
(p)
t ||22 (11)
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TABLE I
STATISTICS OF THE DATASETS USED

Dataset Type Train size Test size Length
D1 CPU-intensive 70% 30% 200000
D2 URL-request 70% 30% 150000

Fig. 4. The correlation between top 22 variables and power consumption on
D1(a) and D2(b). The variables are not complete the same because of the
different workloads of the two datasets.

V. EXPERIMENT

In this paper, we collect the datasets, including power-

time data, system status, and workload data. PDU collects

the power consumption of the two systems respectively per

second, and we use Collectd, an open-source software, to

record system status, such as CPU usage and memory usage

of the individual system per second. Note that the information

of the two systems is measured independently.

A. Parameters

By establishing two power consumption systems, we get the

corresponding datasets. The details of the datasets are listed

in TABLE. I.

The final hyper-parameters are as follows:

We use Adam as the optimizer. Learning rate is set to 10−3,

and the weight decay rate is 10−4.

We use Pearson correlation to select the most correlated

variables as the features for multi-granularity prediction of

power consumption. The Pearson correlation measures the

linear relationship between the variables and power consump-

tion. The relationship between the two is close when the

absolute coefficient of the two variables is close to 1. Excessive

variables can cause the model to be over-fitting, and fewer

variables can lead to the under-fitting of the model. The

variables are arranged in descending order of the Pearson

coefficient of the power consumption, and the appropriate first

N variables are selected. In our experiment, we choose the

top 22 variables to train the model. The remaining variables

have little effect on the performance of the model and may

even reduce the accuracy of the model. The coefficients of the

top 22 most correlated variables are shown in Fig. 4. For the

different workloads, the most relevant top N coefficients are

not exactly the same. We use these features to train the model,

which has a more significant impact on power consumption

than other variables and improves the prediction accuracy of

the model.

Fig. 5. ACF (Autocorrelation function) diagrams

Fig. 6. Convergence speeds of observation window sizes on D1(a) and D2(b)

Then we select the optimized observation window size,

investigate the empirical performance of our method on the

multi-granularity prediction of power consumption, and com-

pare our model to other baselines.

B. Obeservation Window Size

We performed the multi-granularity prediction tasks on each

of our two datasets to compare the performance of our methods

and other methods. We consider both predictions for multi-

granularity: fine-grained prediction, that is, power consump-

tion for the next second, and medium-grained prediction, that

is, average power consumption for the next 30 seconds. The

average power prediction at the next 30 seconds corresponds to

a medium-grained prediction for workflow scheduling to meet

cost savings and the requirement of QoS. In the following

figures, task 1 represents the fine-grained prediction, and task

2 represents the medium-grained prediction.

Because the samples of the two multi-granularity prediction

tasks are from the same datasets, there is no temporal misalign-

ment between the data. Moreover, the observation windows of

the two tasks need to be consistent. First, we compare the

size of the observation window for each dataset. The appro-

priate window size plays an important role in the prediction

accuracy of the model. The observation window is the length

of each sample used to predict the power consumption by
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Fig. 7. Predicted results of different window sizes on D1. Task 1 is the
fine-grained prediction and task 2 is the medium-grained prediction.

Fig. 8. Predicted results of different window sizes on D2

segmenting the dataset. Figure 5 shows that there are strong

autocorrelation and periodicity in the power consumption data.

We respectively observe the performance of four candidate

window sizes (15s, 30s, 60s, and 180s) on the two datasets.

The convergence speeds of the loss functions are shown in Fig.

6. The loss functions for all settings are convergent. When the

observation window size is equal to 180s, the loss function

converges the fastest because the window of 180s covers the

data periods. Fig. 7 and Fig. 8 are the predicted results of

different window sizes of our proposed model on the datasets.

The predicted errors of the four candidate window sizes are

shown in TABLE II. For the fine-grained prediction of power

consumption on D1, the best observation window size is equal

to 15s while the optimized window size is 60s for the medium-

granularity. To prevent the window from being too small to

cause under-fitting, we choose the 60s as the size of the

observation window on D1. And when the length of window

size is equal to 60s, the predicted results of 60s have the lower

RMSE errors than the other three sizes of the multi-granularity

on D2. This reveals that when the window size is set to 180s,

the convergence speed is the fastest, and because the window

length is too long, the overall comparison is worse than other

candidates. Therefore, we use the past 60 seconds of power

values as the optimized observation window size to learn the

multi-task at time t on D2. Moreover, we predict the output

continuously and set the step of the sliding window is 1s.

TABLE II
RESULT OF DIFFERENT OBSERVATION WINDOW SIZES ON D1 AND D2

Error 15s 30s 60s 180s

D1
Fine-grained 0.3030 0.3980 0.4058 0.5745

Medium-grained 0.0453 0.0467 0.0425 0.0470

D2
Fine-grained 0.5133 0.5181 0.4722 0.4752

Medium-grained 0.0793 0.0772 0.0760 0.0776

TABLE III
PRECTION ACCUARCY COMPARISON OF METHODS

Error MGM LSTM GBR ARIMA

D1
Fine-grained 0.4058 0.5010 2.544 3.072

Medium-grained 0.0425 0.0504 0.4025 0.997

D2
Fine-grained 0.4722 0.5089 4.542 8.957

Medium-grained 0.0760 0.0783 0.4970 0.9612

C. Comparison

To evaluate the accuracy and the computational complexity,

we compare our multi-granularity model (MGM) with the

three representative models:

• Standard LSTM network

• Gradient boosting regression (GBR)

• Autoregressive integrated moving average (ARIMA) [33]

The experimental results of the other three prediction meth-

ods are shown in Fig. 9. And TABLE III shows the prediction

errors for all of the prediction models on the two datasets.

In this paper, the prediction error is defined as the root mean

square error (RMSE):

RMSE =

√√√√ 1

M

T∑
t=1

(Yt − Ŷt)2 (12)

where M is the number of prediction values, Yt represents the

actual power values that the PDU measures at time t and Ŷt

is the prediction values at time t.
Our approach and LSTM have lower errors than the other

three models since RNN can deal with the long-range de-

pendency of time series and fit the temporal prediction well.

GBR performs better than ARIMA because ensemble learning

has a desirable accuracy for prediction. ARIMA performs

worst since it only uses power consumption to predict itself.
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Fig. 9. The predicted results of LSTM, GBR, and ARIMA

Compared to the LSTM, our method improves the accuracy

of the tasks, which indicates our method can extract more

abstract representations between the correlated tasks. Besides,

the medium-grained predictions on the two datasets have

significantly lower errors because the accurate power assess-

ment can improve the accuracy of medium-power predictions.

Power consumption assessment has a larger error than power

consumption prediction for all the models since the prediction

for future 30s power fluctuates more softly than the assessment

for the next second power consumption.

VI. CONCLUSION AND DISCUSSION

In the data center, efficient power consumption prediction

has a great significance for workflow scheduling and power

management. In this article, we have developed a multi-

granularity prediction for power consumption issues in the data

center. Fine-grained prediction is defined as the next second

power consumption prediction for data center assessment.

The medium-grained prediction predicts the average energy

consumption at the next 30s for workflow scheduling and

container scheduling. Moreover, because these two tasks have

long-term dependence on time and correlation between tasks,

we propose an LSTM network based on multi-task learning for

this multi-granularity problem. Compared to other predicted

models, the multi-task model can capture more abstract fea-

tures in tasks, thereby improving the performance of correlated

tasks. In the future, we will consider more coarse-grained

prediction or trend prediction [34] of power consumption into

the multi-granularity model, which is different a lot from one

second or 30 seconds of power consumption.

Apart from the power consumption caused by IT equipment,

there are also some effort on heat prediction and saving in

data centers [35] [28]. In this work, we only consider power

consumption generated by the IT equipment. We will also

pay attention to cooling optimization for power saving in

data centers and find more complete features included cooling

equipment in the future to improve the multi-granularity

model.
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