
PCP-2LSTM: Two Stacked LSTM-based Prediction
Model for Power Consumption in Data Centers

Ziyu Shen, Xusheng Zhang, Binghui Liu, Bin Xia, Zheng Liu, Yun Li
Nanjing Key Laboratory of Big Data Security & Intelligent Processing

Nanjing University of Posts and Telecommunications
Nanjing, China

1017041118, 1018041125, 1018041115, bxia, zliu, liyun@njupt.edu.cn

Saiqin Long
College of Information Engineering

Xiangtan University
Xiangtan, China

282293237@qq.com

Abstract—As the size of data centers and cloud computing
continue to expand, power consumption in data centers is
rapidly increasing. It has a great significance to predict and
analyze power consumption in the data center because power
consumption prediction can help data center operators perform
workflow scheduling, manage energy efficiency, provide high
quality-of-service (QoS), and meet the requirements of green
energy use. The current methods are mainly divided into two
scopes: the one is establishing a static relationship between power
consumption and relevant components/applications, and the other
one is treating power consumption as sequential temporal data.
However, the first scope does not consider the dynamic fluctuation
of power, and the other one ignores the characteristics of the
power consumption data. To solve these issues, in this paper,
we present a power consumption prediction framework called
PCP-2LSTM based on the mean smoothing and long short-term
memory (LSTM) network. We first build a power consumption
system to collect data and analyze the stationary of the power
series. Then we use the mean smoothing to remove the noise from
the time series of power consumption. After data preprocessing,
because the time for workflow and container scheduling is usually
30 seconds, we use a stacked LSTM model to predict 30s power
consumption in the future. The experimental result indicates that
our approach outperforms other baselines.

Index Terms—Data center, time series prediction, energy effi-
ciency, power consumption

I. INTRODUCTION

Although the demand for computing ability in cloud com-

puting has promoted the rapid development of data centers, it

caused excessive power consumption in data centers. More-

over, applications and service requirements also cause large

power consumption in data centers. The huge power consump-

tion has brought high costs to data center operators and does

harm to the environment. In data centers, the servers in the

running state consume 10% - 50% [1] of the peak power on

average while the idle servers can consume up to 60% of the

peak power [2], which causes large waste of power. Therefore,

it is imminent to improve the energy efficiency of data centers.

Nowadays, three technologies, which are dynamic voltage and

frequency scaling (DVFS) [3], dynamic power management

(DPM) [4], and power napping [5], are commonly used

in data centers for improving energy efficiency. However,

these technologies are not enough to save large amounts of

power consumption and unable to meet resource management

requirements in data centers.

To overcome these issues, the power prediction combined

with workloads scheduling helps data center operators opti-

mize the utilization and reduce the power consumption [6].

Based on the predicted power values, workloads are allocated

to keep load balancing. Therefore, it is an essential problem

to estimate and predict the power consumption for data center

power management. However, current power prediction meth-

ods are mainly divided into two aspects. The first method is

modeling the relationship between the power consumption and

relevant components/applications and management systems of

data centers, while this method has three disadvantages: 1) it

needs professional domain knowledge and precise measure-

ment tools; 2) the power consumption of some components

cannot be measured easily; 3) besides the hardware/software

configuration, power consumption is affected by other external

factors and has the dynamic pattern that is hard to be captured.

The second method treats power consumption as sequential

temporal data, which is the lack of consideration of the power

data characteristics. A good predicted model must capture

the fluctuation and consider the characteristics of the power

consumption.

In this work, we propose a method to predict the power

consumption of data centers, which includes data acquisition,

data preprocessing, time series analysis, and error analysis.

In data acquisition, we collect the power series and related

features by a power consumption system and analyze the

stationarity of the time series. In data preprocessing, we

leverage the mean smoothing to remove the white noise from

the data. With the denoised data, we train the power prediction

model for predicting the power in the next 30 seconds to

meet the time requirement the workflow scheduling [7] and

container scheduling [8].

Our main contributions are as follows:

• We build a power consumption system and run the CPU-

intensive tasks to acquire the dataset.

• We collect the power dataset and analyze the non-

stationary characteristic of power time series.

• We propose a power consumption prediction (PCP-

2LSTM) model to predict power consumption and com-

pare with other approaches proposed existed.
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II. RELATED WORK

For solving the problem of improving the efficiency of

power consumption of data centers, it is necessary to model

the power prediction. The existing methods see this problem

in two different views: static power addition model and time

series data prediction.

a) Static power addition models: Previous studies are

based on simple physical measurement to model the relation-

ship between power consumption and the components of data

centers. Joseph and Martonosi [9] and Isci and Martonosi [10]

proposed detailed analytical processor power models based on

CPU performance counters. Such models have been developed

for processors, single systems, and groups of systems in

enterprise environments [11]. However, as cloud data centers

continue to expand in size and the power consumption be-

comes more and more complex, this approach is unable to

completely model dynamic fluctuation of power consumption

and ensure the prediction of power consumption effectively.

Then the non-intrusive methods are proposed to model the

relationship between the power consumption and the states of

the servers [12] [13] [14].

b) Time series prediction models: Time series data pre-

diction has an important significance to discuss that it has

been applied widely in many domains. Mazumdar [15] used

ARIMA and exponential smoothing models to predict the

stability of the data center based on real-time data of batch

workload. Recently, the studies of deep learning are applied in

time series. G.Peter Zhang [16] proposed a hybrid ARIMA and

neural network model that combines both to take advantages

for time series predicting. Li [17] proposed two deep learning-

based models: a fine-grained model and a coarse-grained

model for power consumption prediction in data centers. In

[18], the author proposed a self-aware workload prediction

in data center power consumption based on a neural network

model. Salam [19] proposed a multivariate time series ELM

algorithm to predict cloud data center workload based on

energy consumption. Recurrent neural network based on ANN

has been improved in its hidden layers, which not only

receives previous layer output but also get the signal of the

previously hidden layer. However, RNN has problems with

gradient disappearance and explosion in dealing with long-

term time series. LSTM is the improvement of RNN to add

a forgotten layer for solving these problems. Cheng [20]

proposed powerLSTM for power demand predicting compared

to gradient boosting tree (GBT) and SVR, which perform

better than both. LSTM is also used for predicting building

energy load with historical consumption data [21]. However,

there has been not much work using LSTM based on features

for power consumption prediction in data center until now,

which motivates this work we do. And in this paper, we only

consider the fine-grained power consumption prediction.

III. DESCRIPTION OF SYSTEM POWER PREDICTION

In this section, we present the overall architecture and

workflow of the power consumption system and introduce the

process of time series prediction.

A. Power consumption system

The architecture and workflow of the power consumption

system are shown in Fig. 1. The system contains a server, a

monitor computer, a network router, and a power contribu-

tion unit (PDU).The physical machines are built on Ubuntu,

collecting data from the server using Collectd [22] in the

monitor computer. The server uses Apache to handle the

CPU-intensive workloads to generate power consumption. We

keep the servers in different running states by adjusting CPU

utilization. The PDU monitors the power consumption of the

server. By this system, we record the current power and various

system status (detailed in Section 4), and then use these data as

input data to the prediction model. The prediction framework

learns from the historical data to predict future power in

a certain granularity. The prediction results help workloads

scheduling to optimize power performance.

Fig. 1. The architecture and workflow of the power consumption system

B. Process of time series prediction

The prediction model is the key in the system operation.

In general, time series prediction requires the algorithm to

complete the prediction in time. Moreover, the transmission

and acquisition of time series data are generally built on

various types of sensors, causing the time series to contain

the noise, which affects the accuracy of the prediction model.

To solve these issues, we propose a complete framework,

including four steps: data acquisition, data preprocessing, pre-

diction modeling, and error analysis for time series prediction,

where the process is shown in Fig. 2.

Fig. 2. Process of time series prediction

In data acquisition, we collect power consumption data,

system status, and workload data (Section 4).

Data preprocessing consists of three parts: data cleaning,

data normalization, and data denoising. We define the obser-

vation window size and the prediction window size in data

cleaning. The observation window size is the time granularity

of a sample, which is the set of the values of the features in a

certain time range. The prediction window size is the predicted

granularity. Data normalization is to scale the data down to a

small specific interval. This paper uses normalization to scale

the data between -1 and 1. In this work, we normalize the
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values of features except for the values of power consumption.

The transforming formula is as follows:

x′ =
x− μ

σ
, (1)

where x represents the original values of the features, μ
represents the average value of the corresponding domain

of features, and σ represents the standard variance of the

corresponding domain of features.

The time series of power consumption contains random

noise, which has a high interference with the accuracy of

prediction. We use the mean smoothing to remove the noise

from data.

After then, we use the denoised data to predict power

consumption. Time series prediction has two types: the fine-

grained prediction and the coarse-grained prediction. In this

work, for meeting the time requirement of workflow schedul-

ing, container scheduling, and task management, we study the

fine-grained prediction of the data center.

IV. DATA COLLECTION

In this section, we present the software level of the power

consumption system, data acquisition, and data analysis.

A. Software layout of the power consumption system

In this experiment, we use CPU-intensive workloads to

collect the data of power consumption and system status for

training model. We use Collectd as a measurement tool, as

shown in Fig. 1. Collectd measures comprehensive energy-

related information such as CPU utilization, memory utiliza-

tion, and network traffic. Then We use MongoDB to store data

information from Collectd and PDU.

Note that the power consumption system is simplified in

many aspects, compared to real data centers. We only run

one type of workloads while in data centers, there are many

complex applications. However, the key to power consumption

prediction is that the model can capture the dynamic fluctu-

ation and the inherent characteristics of power consumption.

Moreover, our model is based on the black-box model that

is not dependent on specific applications. We can predict the

power of other applications by changing the relevant training

dataset.

B. Power consumption dataset

In this subsection, we will describe the features of the

collected data. The data we collect for power consumption

prediction can be divided into three categories:

1. Parameters of system state: for predicting the power

consumption, some related system counters data should be

collected. We collect these data per second. The number of

features is 158, and some detailed features are listed in TABLE

I.

2. Temporal data of workloads: by sending requests to web

servers, we can approximately acquire the workload level.

These data are recorded per second, which needs to keep

consistent with the global timestamp.

TABLE I
INPUT VARIABLES DECRIPTIONS

System
counters

Related Details

CPU usage
CPU

Idle, non-idle(active)
CPUfreq the current CPU frequency
Intel CPU per-
formance coun-
ters

hardware CPU cache events, software
events and hardware events meaure-
ment

Memory usage
Memory

Bytes of physical memory used
Percent of physical memory used

Memcached Statistics about memory used, as well
as cache utilizaiton and bandwidth used

Disk usage
Disk

The usage of physical disks and logical
disks(partitions)

Disk I/O infor-
mation

Bytes wtitten to/read from as disk,
bytes write/read operations to a disk,
opetations time

Df Information about disk space used/free
Protocols

Network

Network protocols information (IP,
TCP, UDP, etc.)

Ping The average latency, the standard devi-
ation and the drop rate for each host

DNS status DNS traffic capture and analysis
Network file
sysetm (NFS)
status

Information about NFS used

MIC CPU statistics, memory usage and tem-
peratures from Intel’s Many Integrated
Core (MIC) system

Write mongodb Send values to mongodb

3. Power-time data: the power consumption from PDU is

recorded per second.

Actually, although statistical methods assume that the time

series is stationary, the power consumption of the data center

varies dramatically that the assumption is not always true

[23]. We analyze the stationarity of power data series. We use

the autocorrelation function (ACF) and partial autocorrelation

function (PACF) to test the data. The stationary data have a

short-term correlation that as the lags increases, the autocor-

relation coefficient decreases rapidly to 0. Conversely, if the

rate of decline is low, the data series is non-stationary. We plot

the power data series diagram, autocorrelation plot, and partial

autocorrelation plot, as shown in Fig. 3. It can be seen from

Fig. 3. ACF, PACF diagram

the timing diagram that the intervals of peaks are similar and

periodic. We find that the autocorrelation coefficient decays

slowly to 0. We can get a conclusion that the power data

series are non-stationary.
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Moreover, the power profile has a sudden drop from the

peak to the bottom of the valley. The decline to the low power

is set as sleep for a temporal time for simulating the servers

in real data centers in idle and rarely emerging emergencies

or exceptional cases which makes the time series more non-

stationary and increases the difficulty in predicting accuracy.

V. POWER CONSUMPTION PREDICTION MODEL FOR

FINE-GRAINED PREDICTION

A. LSTM

Long short-term memory (LSTM) network [24] is a varia-

tion of recurrent neural network (RNN). In recent years, LSTM

is widely applied in dealing with the problem of predicting

time series, which can avoid the long-term dependency prob-

lem.

As shown in Fig. 4, a memory cell consists of three gates: an

input gate, a forget gate and an output gate. These gates control

the information passed whether or not by sigmoid function and

a pointwise multiplication operation.

Fig. 4. LSTM cell structure

The meaning of mathematics Symbols in Fig. 5 are as

follows:

1. xt represents the input vector at time t;
2. ht is the state value of the memory cell at time t, used

as input at the next time t+ 1;

3. Wi, Wf , Wo and Wc are the corresponding weight

matrics of three gates and cell respectively;

4. bi, bf , bo and bc are the corresponding bias vectors of

three gates and cell respectively;

5. it, ft and ot are the values of three gates.

In the first step, LSTM decides which information to go

through the cell by using the forget gate. The gate generates

a value between 0 and 1 according to ht−1 and xt. 1 means

”complete acceptance” while 0 means ”complete rejection”.

The formulation is as followed:

ft = σ(Wf · [xt, ht−1] + bf ), (2)

In the second step, the input gate uses sigmoid to decide

which information need to update to generate a new matric, c̃t,
a candidate state of the memory cell at time t. It is formulated

as below,

it = σ(Wi · [xt, ht−1] + bi), (3)

c̃t = tanh(Wc · [xt, ht−1] + bc), (4)

In the third step, we use ft and c̃t to update the state of the

memory cell, ct.

ct = ft ∗ ct−1 + it ∗ c̃t, (5)

In the last step, we first use the output gate to calculate a

coefficient of output, then we use tanh function to scale ct
into [-1,1] as the final output ht.

ot = σ(Wo · [xt, ht−1] + bo), (6)

ht = ot ∗ tanh(ct), (7)

B. PCP-2LSTM model

We use two stacked LSTM to model the relationship be-

tween power consumption and relevant features to predict the

power.

In Fig. 4, xt represents the input and ŷt+1 is the output

value at time t which represents the power value in the future

time.

Fig. 5 shows the flow chart of the algorithm.

We predict the power consumption by modeling the relation-

ship between power consumption and related features. First,

we use the mean smoothing to remove the noise from original

power data. Then we leverage the denoised data to train the

power consumption prediction model. We define the size of the

prediction window to predict power consumption. We predict

the next 30 seconds by using the previous 30 seconds of the

samples. Therefore, our observation window size is 30, and the

prediction size is set to 30. In the last step, the model outputs

the predicted value of power consumption and is compared

with the other five baselines.

Fig. 5. Flow chart of the algorithm

VI. EXPERIMENT

A. Data preprocessing

In this section, we process the power consumption data to

make it more suitable for prediction. Fig. 6 shows the power

profile when the server is in the idle state for two different

periods. As observed from Fig. 6 that the power consumption

curve fluctuates frequently and dramatically when there is no

load on the server, which indicates that there is a certain noise

in the idle state of the server power consumption.

Fig. 6. Power profile when the server is in idle state
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To alleviate the effect of noise, we leverage the mean

smoothing to remove the white noise. We substitute the

average values of the power consumption for the original data

at the length of l and downsample the value in the window.

When the length of the window is large enough, the impact

of the noise can be eliminated. It is important that the length

is not chosen at random. The key to this method is to ensure

a suitable size of the window to smooth. The window size l
decides to eliminate how much noise and discard how much

information.
We experiment with the size of the different windows

and choose the appropriate window size by comparing their

variance. We use the variance ratio as the choice of window

size, as shown in the following formula.

variance ratio =
std(Pi(t))

std(Pidle(t))
, (8)

where std(Pi(t))represents the standard variance in running

power data after smoothing of different window sizes and

std(Pidle(t)) represents the standard variance in data when

the server is idle.
For the data series, as the smoothed window size increases,

the variance ratio of the data decreases, as shown in Fig. 7.

After the window size is greater than 30, the variance ratio

polyline tends to be horizontal. The variance ratio is smaller;

the effect of denoising is better. However, a larger window

size will cause the time series to lose too much information.

We collect the data per second, which means the original time

unit of power consumption is 1 second. The new power series

now has 1 · l time unit. Therefore, we set the observation

window size to 30 seconds and deal with all the data with this

smoothing method.g

Fig. 7. The relationship between window size and variance ratio

B. Settings and results
We normalize the data of features selected except values of

power to unify the values of individual features for eliminating

the effect of different dimensions. The observation window

size and prediction window size are set to 30. We use the

PCP-2LSTM model, where the number of hidden layers is 3,

and the number of nodes is 32. We conduct the experiments

compared our model with the stacked LSTM without the mean

smoothing (2LSTM), GBR, recursive autoencoder (RAE) [25],

LSTM, and ARIMA. Except for the 2LSTM model, GBR,

RAE, LSTM, and ARIMA use the mean smoothing for data

preprocessing. In the dataset, the first 70 percent is the training

set; the last 30 percent is the testing set. We set dropout = 0.1

and epoch = 20000. Mean squared error (MSE) measures the

average value of the squared errors as the following formula

(9).

MSE =
1

M

M∑
t=1

(Yt − Ŷt), (9)

where M is the number of predicted values, Yt represents the

actual power values that the PDU measures at time t and Ŷt

is the predicted values at time t.

We use the normalized Root Mean Squared Error (nRMSE)

to evaluate the accuracy of the prediction model. nRMSE is

calculated by Eq (10).

nRMSE =

√
MSE

σ′Y
, (10)

where σ′Y represents the standard error of the testing set of

power consumption.

TABLE II
PRECTION ACCUARCY COMPARISON OF METHODS

Error PCP-2LSTM 2LSTM LSTM GBR RAE ARIMA
nRMSE 0.417 1.002 0.474 0.5 32.8 0.47

Fig. 8 shows the results of different prediction models.

TABLE II presents the predicting accuracy of six models by

nRMSE. We observe that our model can fit the actual power

consumption and outperforms the other five models in pre-

dicting the power consumption. The experimental results show

that the mean smoothing can improve prediction accuracy. The

statistic model ARIMA outperforms other methods except for

our proposed model because ARIMA can smooth the non-

stationary time series data and build the corresponding model

according to the identified characteristics. The LSTM has a

larger prediction error than PCP-2LSTM since the stacked

LSTM has more hidden layers and can do better represen-

tations. However, surprisingly, RAE has rarely fluctuation in

our dataset, which has an enormous error and has the worst

prediction performance of all. The cause of this problem may

be the linear model RAE cannot capture the fast fluctuation

of the power consumption in our dataset.

VII. CONCLUSION

In this paper, we propose a time series predicting frame-

work for power consumption of data centers, which contains

four steps: data acquisition, data preprocessing, time series

prediction, and error analysis. We build a power consumption

system to collect the dataset and analyze the stationarity of our

dataset. In the data preprocessing stage, the mean smoothing is

applied to remove the noise. For the prediction model, we use

a stacked LSTM to learn characteristic from the data and test

the predictive accuracy compared with the other five models.

The result indicates that our model has a higher efficiency by

measured nRMSE metric and tracks the fast changes of the

power consumption with high randomness well. However, the

system to implement the experiment on is simplified compared

to the real data center, and we only simulate CPU-intensive

tasks while there are many types of requests from users in the

data center. In future work, we will simulate the requests from
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Fig. 8. Prediction results of PCP-2LSTM and other methods

the users based on a larger scale power consumption system

to study the power consumption and study the influence of

different tasks on power consumption. Moreover, we will study

the power consumption prediction of containers.
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