
FLAP: An End-to-End Event Log Analysis Platform for System
Management

Tao Li

Nanjing University of Posts and

Telecommunications

Florida International University

taoli@cs.�u.edu

Yexi Jiang, Chunqiu Zeng

Computing and Information Sciences

Florida International University

Miami, USA

{yjian004,czeng001}@cs.�u.edu

Bin Xia, Zheng Liu

Computer Science

Nanjing University of Posts and

Telecommunications

Nanjing, China

Wubai Zhou, Xiaolong Zhu,

Wentao Wang

Computing and Information Sciences

Florida International University

Miami, USA

Liang Zhang, Jun Wu, Li Xue,

Dewei Bao

Huawei Nanjing Research and

Development Center

Nanjing, China

ABSTRACT
Many systems, such as distributed operating systems, complex

networks, and high throughput web-based applications, are contin-

uously generating large volume of event logs. �ese logs contain

useful information to help system administrators to understand the

system running status and to pinpoint the system failures. Gen-

erally, due to the scale and complexity of modern systems, the

generated logs are beyond the analytic power of human beings.

�erefore, it is imperative to develop a comprehensive log analy-

sis system to support e�ective system management. Although a

number of log mining techniques have been proposed to address

speci�c log analysis use cases, few research and industrial e�orts

have been paid on providing integrated systems with an end-to-end

solution to facilitate the log analysis routines.

In this paper, we design and implement an integrated system,

called FIU Log Analysis Platform (a.k.a. FLAP), that aims to facilitate

the data analytics for system event logs. FLAP provides an end-to-

end solution that utilizes advanced data mining techniques to assist

log analysts to conveniently, timely, and accurately conduct event

log knowledge discovery, system status investigation, and system

failure diagnosis. Speci�cally, in FLAP, state-of-the-art template

learning techniques are used to extract useful information from

unstructured raw logs; advanced data transformation techniques

are proposed and leveraged for event transformation and storage;

e�ective event pa�ern mining, event summarization, event query-

ing, and failure prediction techniques are designed and integrated

for log analytics; and user-friendly interfaces are utilized to present

the informative analysis results intuitively and vividly. Since 2016,

FLAP has been used by Huawei Technologies Co. Ltd for internal

event log analysis, and has provided e�ective support in its system

operation and work�ow optimization.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 ACM. 978-1-4503-4887-4/17/08. . .$15.00

DOI: 10.1145/3097983.3098022

CCS CONCEPTS
•Information systems→Data analytics; •Networks→Network
monitoring; •Computing methodologies →Machine translation;

KEYWORDS
Data Mining System, Log Processing, Event Mining, Event Summa-

rization

1 INTRODUCTION
Modern systems and applications are continuously generating

many kinds of events, from low level events such as system utiliza-

tion and network tra�c events, to high level events such as HTTP

requests and UI click events. �ese events capture the systems’

behaviors and contain the clues of potential operation issues. Intu-

itively, if the recorded events can be fully utilized, the downtime

of the systems can be minimized, and the system performance and

operation cost can also be optimized.

�e necessity of e�ective event log analysis can be re�ected by

the real Comcast (i.e., the largest broadcasting and cable television

company in the U.S.A) service outage event. In February 2016, users

frequently encountered various types of problems when using the

services of Comcast’s Internet (e.g., X�nity or Internet-based tele-

vision). Although the website is integrated with a comprehensive

logging system that records everything about the system status,

the tech team still failed to troubleshoot the service outage in time.

Due to the inability of quick problem diagnosis, the services were

interrupted for hours and more than 27 million people across the

country were impacted
1
.

Besides Comcast service outage event, a number of other similar

system failure cases in recent years also resulted in serious conse-

quences
2
.�erefore, people gradually pay increasing a�ention to

advanced event log analysis techniques, hoping that the problem

pinpoint e�ciency can be improved and the failure can be e�ec-

tively identi�ed or avoided before it causes grave consequences.

1
h�p://money.cnn.com/2016/02/16/technology/comcast-outage-over/index.html

2
h�p://abcnews.go.com/Technology/facebook-social-network-su�ers-

outage/story?id=24808635

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1547

Recently, a lot of research e�orts have already been focused on

facilitating log processing [12, 13]. Many tools have been devel-

oped to address event log management for speci�c use cases, such

as event monitoring [18], event archiving [2], event information

extraction, and event querying [4, 26]. Also, a few new compa-

nies, such as Splunk3
, AppFirst4, and Loggly5

, have been founded

to provide convenient log management products. Traditional IT

giants, such as HP, IBM, and Amazon, have also developed their

own internal log management systems, such as HP OpsAnalytics [7],

IBM Tivoli [8], and Amazon CloudWatch [1].

�ese products greatly facilitate system administrators’ daily

tasks, but they are still inadequate to provide a generic, comprehen-

sive, and end-to-end solution. On one hand, the products developed

by the log management companies are generic and e�cient, but

their analytic modules still have much room for improvement. For

example, Splunk is able to collect the logs from the machines and

is Operating System independent. It has superior log processing

capabilities in terms of scalability and performance, thus enabling

simultaneously log collection and indexing from a large number

of machines. However, this product only provides the most fun-

damental analytics tools such as dashboards with basic statistics

and keyword based search. �ese products are adequate for daily

inspection but would not be helpful enough for some more com-

plex tasks such as failure detection and diagnosis. On the other

hand, the products developed by the IT services companies are

highly customized and are equipped with more advanced analytics

tools. However, these products are not generic as they are o�en

adherent to their own IT services. For example, HP OpsAnalytics, a

comprehensive product that provides advanced data analytic tools,

is able to help system administrators to quickly conduct predictive

analysis and failure diagnosis. Whereas, HP OpsAnlytics is part of

the HP service ecosystem, and it is not trivial to be integrated with

other non-HP IT services.

1.1 Challenges and Proposed Solutions
Considering the increasing scalability and complexity of event log

data, designing and developing a generic event analysis system is

not a trivial task. Based on the observations we have made during

our preliminary study, we have identi�ed several key challenges and

proposed an end-to-end solution called FIU Log Analysis Platform
(FLAP) to address the challenges.

Challenge 1. Given various types of event logs, how to support
event analysis in a generic and comprehensive manner?

Existing log management products, like the ones we mentioned

above, do not provide a generic and comprehensive solution. �e

products developed by log management companies are able to han-

dle various types of event logs, but they are less comprehensive due

to the lack of advanced data mining based solutions. �e products

developed by IT services companies provide complete functions

from log collection to log analysis. However, such products are

tailored to speci�c ecosystems that cannot be easily adapted.

FLAP is designed to be both generic and comprehensive. In terms

of generality, the data processing and event mining libraries in

3
h�p://www.splunk.com/

4
h�p://www.app�rst.com/

5
h�ps://www.loggly.com/

FLAP are designed to be domain independent. Such a design makes

FLAP to be �exible enough to handle various types of logs and to

conduct various types of event analysis tasks. Although, FLAP has

already included a number of data pre-processing and event mining

algorithms, users can still import new algorithms into the system

to enrich the power of the system. In terms of comprehensiveness,

FLAP supports the entire work�ow of event analysis, including log

pre-processing, event extraction, event querying, event mining,

and event visualization. �ere is no need to use a third-party tool

during the whole event analysis procedure.

Challenge 2. Facing various analysis requirements with di�erent
objectives, how to e�ectively adapt existing analysis methods for
highly customized analysis tasks?

In FLAP, Challenge 2 is e�ectively addressed by developing ap-

propriate data mining algorithms for log analysis. Speci�cally, three

problems are considered to be important and critical to the sys-

tem administrators: 1) Discovering the correlations and casuality

among di�erent event types; 2) Summarizing and demonstrating

the running status of the target systems; 3) Forecasting the potential

problems and troubleshooting the failures of the systems.

To solve the aforementioned problems, we design a number

of advanced pa�ern mining algorithms and integrate them into

FLAP, including event temporal dependency mining, event temporal

lag mining, and failure prediction. Leveraging these algorithms,

system administrators can e�ectively discover a various types of

correlations among the events and obtain insightful information

about the systems.

Challenge 3. Given various types of analysis results, how to
e�ectively present them to users?

Presenting the data as well as the analysis results in a reasonable

and intuitive way is not a trivial task. Typically, the raw data and

results can be easily understood by data mining experts, but they

are less informative to the people without technical background.

To address this challenge, FLAP provides a user-friendly dashboard

with intuitive charts and diagrams. Moreover, to facilitate data

exploration, FLAP supports Dynamic �ery Form, an intelligent

mechanism for users to perform interactive data exploration.

1.2 Roadmap
�e rest of this paper is organized as follows. Section 2 presents

an overview of FLAP. In Section 3, we discuss how the logs are pre-

processed and introduce the log organization strategies supported

in FLAP. In Section 4, we describe how FLAP conducts event analysis

via multi-resolution analysis, event summarization, event pa�ern

mining, and system failure prediction. In Section 5, we introduce

the visual component of FLAP and demonstrate its information

visualization capability. Section 6 presents the system evaluation as

well as the case study. In Section 7, we introduce the related work.

Finally, Section 8 concludes the paper.

2 FLAP OVERVIEW
FLAP is a web-based integrated system for log analysis. �e screen-

shots of FLAP are shown in Figure 1 and the architecture overview

is displayed in Figure 2. Using FLAP, users can conduct di�erent

stages of event processing/analysis seamlessly and conveniently.

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1548

(a) Dashboard (b) Event Extraction (c) Event Summarization

(d) Temporal Dependency Mining (e) Temporal Lag Mining (f) Dynamic �ery Form

Figure 1: �e screenshots of FLAP.

Figure 2: System architecture.

In general, FLAP consists of four layers of components, includ-

ing Data Pre-processing Layer, Event Storage Layer, Event Mining
Libraries, and Event Visualization Portal.

Event Pre-processing Layer provides a �exible way to conduct

all pre-processing of the event logs. Due to the diversity of event

log formats and event data sources, it is not likely to design and

implement a one-�t-all pre-processing module to e�ectively handle

all types of event logs. To be �exible, this module is designed

to be extensible and currently includes two log pre-processing

approaches: rule based event extraction and template learning. �e

�rst approach is the traditional way for domain experts to de�ne

the ad-hoc rules to extract the events from unstructured or semi-

structured logs. �e second approach is a more advanced approach

for event extraction. It leverages unsupervised learning techniques

to automatically learn the event templates and then extract the

events accordingly. �is approach can be used when the number

of latent event types is too large to be extracted via manually set

rules.

Event Storage Layer handles the storage and data retrieval tasks.

Once the logs are pre-processed, the extracted events will be stored

in a speci�ed repository. To balance both space cost and retrieval

e�ciency, we carefully designed the storage format of the events.

Event Mining Libraries is the core part of the system. It integrates

a number of useful event processing and mining algorithms for

di�erent use cases, including event multi-resolution analysis, event

summarization, event pa�ern mining, and system failure prediction.

�ese algorithms can be used to help system administrators for

system diagnosis.

Event Visualization Portal is the interface between the system

and the users. To intuitively present the analysis results, this layer

is designed to be user-friendly and easy to operate. Speci�cally,

a dashboard is provided to illustrate the basic statistics; Dynamic

�ery Form is presented to enable the interactive and intelligent

event data exploration; Summarization and Visualization module

is presented to display the mining results.

3 LOG ORGANIZATION
Usually, the raw log messages only contain the unstructured or

semi-structured text instead of the well-de�ned events. Figure 3 (a)

shows an example of raw log message obtained from FLAP. Discrete

or structured events are much easier to be visualized and explored

by human experts than raw log messages. �erefore, there is a

need to convert the raw logs into discrete or structured events. �e

Event Pre-processing Layer of FLAP provides two solutions to event

extraction: Rule Based Event Extraction and Unsupervised Template
Learning.

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1549

3.1 Rule Based Event Extraction
Rule based event extraction is a traditional way that allows people

to manually de�ne the regular expression rules to extract the events.

In FLAP, system administrators can create extraction con�guration

�les, and each �le would contain multiple extraction rules that can

be applied to extract the events from raw log messages. Concretely,

there are four components for each rule: event name, type pa�ern,

extraction pa�ern, and parameters. In particular, event name de�nes

the name of the extracted event; type pa�ern de�nes the pa�erns to

match the messages; and extraction pa�ern and parameters de�ne

the parameters that need to be extracted. An example rule can be

seen in Figure 3 (b).

Figure 3: Regex matching and template learning.

For each raw log message, the �rst matched rule will be used and

the corresponding parameters of the events will be extracted. �e

extracted events are then would be stored and used by downstream

analysis tools.

Rule based event extraction is an intuitive method to extract

events from raw logs. �is method is useful if the number of latent

types is small and the types can be easily identi�ed. But, it is

common that logs can have a large number of event types in practice.

For example, Windows Event Manager typically records events with

thousands of types [10]. Many Linux services, such as openssh,

Kerboros 5, and Samba 3 [27], also have similar number of event

types. �erefore, to handle complex logs, machine learning and

data mining based methods are needed.

3.2 Learning Based Event Extraction
When the number of latent event types in the raw logs is large,

the time cost for rule based event extraction becomes prohibitive.

According to our experiences, a moderately complex log would

require 2 days for a domain expert to de�ne the rules.

To deal with complex raw textual logs, we apply template learn-

ing for automatic event extraction [21]. In general, template learn-

ing utilizes the format and structural information of the raw logs

in the clustering process to generate events. An example of the

extracted template, is shown in Figure 3 (c). In template learning,

the problem of discovering the event types is formulated as fol-

lows: Given a set of messages S = {s1, s2, · · · , sn }, the objective of

the template learning is to �nd a representative set of k ≤ n log

messages, named S∗, to express the information of S as much as

possible, where each element in S∗ represents one type of event,

and k is a user-de�ned parameter. To quantify the goodness of S∗,
the event coverage (JC (S

∗, S)) of S∗ is used as the objective function

and its form is de�ned as follows:

max JC (S
∗, S), subject to |S∗ | = k,

where JC (S
∗, S) =

∑
x ∈S

max

x ∗∈S∗
FC (x

∗,x). (1)

In Equation (1), FC (x
∗,x) is the similarity function of the log mes-

sage x∗ and the log message x .

To measure the similarity between log messages, a message is

transformed into a tree T = {V ,E,L,vroot , P }, where V is the set

of nodes, E is the set of edges, P is the set of log message segments,

L is the mapping function between the set of nodes and the set

of log messages segments, i.e. L : V → P , and vroot is the root

node. Given two messages s1 and s2 and their corresponding trees

T1 = {V1,E1,L, r1, P } and T2 = {V2,E2,L, r2, P }, the similarity is

quanti�ed as follows:

FC (s1, s2) =
F ′C (r1, r2, λ) + F

′
C (r2, r1, λ)

2

, where

F ′C (v1,v2,w) = w ·d (L(v1),L(v2))+
∑

(v,u)∈M∗C (v1,v2)

F ′C (v,u,w ·λ).

In the above equation, λ is a user-de�ned parameter between 0

and 1. M∗C (v1,v2) denotes the best matching between the children

of v1 and v2. �e function d (·, ·) measures the similarity between

two log message segments. Given two message segments: m1 =

p1, · · · ,pn1
and m2 = q1, · · · ,qn2

, their similarity is computed in

Equation (2).

d (m1,m2) =
1

√
n1 · n2

min (n1,n2)∑
i=1

xi (2)

By leveraging message segment table [21], the event template can be

learned using clustering and the whole procedure can be conducted

in O (n2) time in the worst case, where n is the number of log

messages.

4 EVENT ANALYSIS
�e main part of FLAP, Event Mining Libraries, provides a large num-

ber of e�cient and e�ective event processing and mining algorithms

and greatly facilitates administrators managing and maintaining

the modern systems.

4.1 Multi-resolution Event Exploration
Exploring useful knowledge from the logs depends on the choice of

data granularity, time range, and the event type set. For di�erent

people with di�erent purposes, there are various ways of conduct-

ing event analysis. Before �nding insightful information, system

administrators would conduct multiple rounds of analysis using

di�erent analysis algorithms/parameters on di�erent data inputs.

To facilitate the repetitive event analysis, FLAP develops a multi-

resolution data exploration module that decouples the procedures

of data preparation and data analysis [9]. Using this module, users

can easily compose various event analysis tasks and then e�ciently

execute them without redundant data preparation. To integrate

this module into FLAP, we modi�ed the implementation and made

it adaptable to all downstream event analysis algorithms.

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1550

With the support of multi-resolution exploration, FLAP is quite

�exible where many real-life scenarios can be adequately and e�-

ciently handled and supported. �ree typical use cases of FLAP are

described and discussed as follows.

Scenario 1. A whole year log of the target system is available
in FLAP, but the system administrator only wants to analyze the
events that occurred during the latest 1 month. Moreover, she/he is
not interested in the events that are related to “�rewall scan”.

Scenario 2. Speci�c details contribute li�le to the investigation
of long term system behaviors. Moreover, analyzing logs with large
numbers of records is time-consuming for computational intensive
data mining algorithms. �erefore, it is preferable to perform analysis
with the needed details at the appropriate level of granularity.

Scenario 3. A�er conducting event summarization, the system
administrator found that one particular time period of events is suspi-
cious. �erefore, she/he intends to use other event mining techniques
to �nd out more details.

Typically, performing each of the task in the aforementioned

scenarios requires non-trivial e�orts from the system administra-

tors. �is is because they need extra e�orts to pre-process the

data before each trial, and di�erent tasks require di�erent kinds

of pre-processing. �e multi-resolution data exploration module

in FLAP provides carefully designed event operators to handle the

above tasks. Generally, there are two groups of operators for event

manipulation: the data transformation operators and the data query
operators. �e �rst group of operators contains six operators, includ-

ing Vectorize/Unvectorize, Encode/Decode, Prune, and Concatenate.
�ey are used to transform data from one type to another. �e sec-

ond group of operators contains four operators, including Project,
Select, Zoom, and Describe (indicating the concrete analysis algo-

rithm). �ey are used to retrieve event data with di�erent query

conditions.

Based on the de�nition of these proposed operators, multi-resolution

event manipulation can be described as the following expression:

ϒname (σ
∗
[tstar t ,tend]

τ ∗uΠ
∗
E∈P (E) (F)),

where ϒname , i.e. Describe operation, indicates the name of the

concrete analysis algorithm, σ
[tstar t ,tend]

, τu , and ΠE∈P (E) repre-

sent Select, Zoom, and Select operation respectively, and symbol ∗

denotes conducting the operation 0+ times. �is expression shows

that the events can be extracted with any event type subset in any

resolution during any time range with any analysis algorithm.

4.2 Temporal Dependency Mining
Discovering interesting pa�erns from sequential data types can

provide great insights about the system behaviors. For example, a

computer system problem may trigger a series of symptom events,

indicating a natural signature for identifying the root cause of

system problems. Traditionally, mining frequent episodes from

an event sequence can be a�ained by prede�ning a �xed time

window size. With the help of window size, items in the same

sliding window are viewed as an itemset in a single transaction.

�en the idea of mining frequent itemsets from transaction data is

applied for discovering frequent episodes. However, this method

causes two issues which required to be solved in real applications.

Issue 1. �e �xed time window scheme can not explore temporal
information within a window precisely, and misses the opportunity to

discover the temporal relationship with time distances larger than the
prede�ned time window size.

Issue 2. �e frequent pa�ern mining framework incurs a well-
known issue that it fails to discover the infrequent but signi�cant
pa�erns which o�en acquire more concern in some scenarios such
as system management. For example, in a well-managed system,
frequent pa�erns are normal operations and service disruptions are
usually infrequent but signi�cant pa�erns.

�e above issues can be addressed by temporal dependency pat-

tern mining. �e problem se�ing of temporal dependency pa�ern

mining can be brie�y described as follows: Given the occurrences

sequence of two event types SA =< a1,a2, ...,aj , ...,am > and

SB =< b1,b2, ...,bi , ...,bn >, a temporal (dependency) pa�ern de-

�ned over SA and SB is denoted asA→
[τ−δ,τ+δ]

B, which indicates

B statistically depends on with time period τ and time variance

δ . To discover the temporal pa�erns in event sequences, FLAP
integrates the t-pa�ern method [14], which is able to e�ectively

identify the dependencies between two types of events without

introducing time windows.

To discover the dependency, two types of distributions are evalu-

ated and they are de�ned as follows. Unconditional Distribution.

�e unconditional distribution of the waiting time for event B is

de�ned as

FB (r) = P (d (x , SB) ≤ r),

where x ∈ R, r ∈ R andd (x , SB) is the distance between a timestamp

x and a sequence of time stamps SB , de�ned as

d (x , SB) = inf

z∈SB∧z≥x
| |z − x | |`1

.

FB (r) describes the probability of having event B occurring within

an time interval r a�er any timestamp x .

�e unconditional distribution of the waiting time for event

B can be estimated from the observed event sequence SB =<
b1,b2, ...,bi , ...,bn >, where 1 ≤ i ≤ n. For example in Figure 4 (a),

the unconditional distribution FB (r) of the waiting time for event B

are estimated as FB (r) = P (tB − tx < r) =
len ({x ∈[0,T]:d (x,SB)≤r })

len ([0,T]) .

�us, FB (10) = 5+10+10+10+10

90
= 50%.

Conditional Distribution. �e conditional distribution of the

waiting time for event B with respect to event A is de�ned as

FB |A (r) = P (d (x , SB) ≤ r : x ∈ SA),

where FB |A (r) describes the conditional probability distribution

given an event A happening at timestamp x and it is estimated as:

FB |A (r) =
1

m |{aj : d (aj , SB) ≤ r ∧ aj ∈ SA}|.�us, in Figure 4 (b),

FB |A (10) = 3

4
= 75%.

�erefore, given two event sequences SA and SB ,A→ B i� FB (r)
is signi�cantly di�erent from FB |A (r). As shown in Figure 5, signi�-

cant di�erence between unconditional and conditional distribution

is illustrated when two events are dependent, while no obvious

di�erence is presented given two independent events.

�e dependency test betweenA and B is based on the comparison

between the �rst moments of FB (r) and FB |A (r) respectively. MB
and MB |A can be computed as MB =

1

2T
∑n
i=1

t2

i and MB |A =
1

m
∑m
j=1

dj . Under the null hypothesis thatA and B are independent,

the strength of their dependency can be evaluated using statistical

testing [14].

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1551

5 20 50 70 90

(a)

B B B B B

5 10 10 10 10

5 20 50 70 90

(b)

B B B B B

5 10 10 10 10

x

tB-tx

A A A A

Figure 4: �ere are two types of events (A and B) happen-
ing during the time interval [0, 90]. Time lag r = 10 is
given. (a) shows FB (r) describing the probability that any
random point x followed by an event B within time lag r . (b)
shows FB |A (r) denoting the possibility that A is followed by
B within time lag r .

Figure 5: Cumulative probability distribution function. Un-
conditional and conditional distributions for two dependent
events are shown in the le� sub�gure, while the right sub�g-
ure displays the unconditional and conditional distribution
for two independent events.

4.3 Event Temporal Lag Mining
Time lag is one of the key features to depict the temporal depen-

dencies of the events. It is informative to help discover the evolving

trends of the coming events and predict the future behavior of the

systems. In FLAP, an e�ective event lag mining algorithm is devel-

oped to help system analysts to quickly identify the latent temporal

correlations between event pairs [28].

Suppose SA =< a1, · · · ,am > and SB =< ba , · · · ,bn > are

two sequences of events with types A and B, the time lag between

event A and B (A→L B) is modeled as the time interval µ between

the most appropriate event pairs ai and bj with noise ϵ , i.e. bj =
ai + µ + ϵ .

In order to discover the temporal dependency rule A→L B, we

need to learn the distribution of the lag L. �e problem of identify-

ing the most likely time lag between event pairs is equivalent to

learn the parameter Θ that determines the distribution of the time

lag L. �e intuitive idea of solving this problem is to �nd the most

likely parameter Θ given both sequences SA and SB , as quanti�ed

by Equation (3).

Θ̂ = arg max

Θ
P (Θ|SA, SB), (3)

which can be further reduced to

Θ̂ = arg max

Θ
ln P (SB |SA,Θ), (4)

by applying the Bayes Rule, taking the logarithm on both sides, and

eliminating the irrelevant terms.

By assuming the event instances in SB are mutually independent

given the sequence SA and value of Θ if B is caused by A, we can

get

P (SB |SA,Θ) =
n∏
j=1

P (bj |SA,Θ). (5)

As L is a latent constant and ϵ is a random variable, the distri-

bution of L can be expressed as a normal distribution with mean µ
and variance σ , i.e. L ∼ N (µ,σ 2).

To estimate Θ, the EM algorithm is applied with Expectation
quanti�ed as Equation (6) and Maximization quanti�ed as Equa-

tion(7).

Expectation: ri j =
r ′i j × N (bj − ai |µ

′,σ ′2)∑m
i r ′i j × N (bj − ai |µ ′,σ ′2)

(6)

Maximization:

µ = 1

n
∑n
j=1

∑m
i=1

ri j (bj − ai)

σ 2 = 1

n
∑n
j=1

∑m
i=1

ri j (bj − ai − µ)
2

(7)

�e optimization can be easily resolved using standard EM opti-

mization method [28].

4.4 Event Summarization
Section 4.2 and Section 4.3 introduced two concrete mining tech-

niques in Event Mining Libraries of FLAP: temporal dependency

mining and event temporal lag mining. Both techniques are used

for e�ciently uncovering the hidden information from dynamic sys-

tems. However, as the size of event logs grows dramatically, most

pa�ern mining techniques would typically output a large number

of pa�erns that would overwhelm system administrators. Hence, it

is o�en preferable to have a global overview of the observed system

before conducting the detailed system analysis [12, 25].

In FLAP, we developed Natural Event Summarization to sum-

marize the events from the temporal perspective. Natural Event
Summarization is able to summarize the given events using inter-

arrival histograms in order to capture the temporal relationships

among events [10]. It leverages a two-stage optimization guided

by the Minimum Description Length Principle [6] that compromises

the summary results between accuracy and brevity. A high level

overview of the procedure of natural event summarization is illus-

trated in Figure 6.

Figure 6: Event summarization.

Suppose an event sequence D is the event sequence with n
event instances in form of event-timestamp pairs, i.e. (t , e) and

D = (< t1, e1 >, · · · , < tn , en >), the problem of Natural Event
Summarization can be formulated as follows: Given an event se-

quence D, for each subsequence S containing event types x and y,

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1552

the minimum description length L(S) for S is de�ned as

L(S) = arg min{S1,S2, · · · ,Sk }

∑
i
L(h(Si)). (8)

In Equation (8), S denotes the subsequence of D that only con-

tains events of types x and y, Si denotes the disjoint segment of

S , i.e. S = (S1, S2, · · · , Sk), and L(h(Si)) denotes the minimum

description length of Si .
�e minimum description length of L(h(Si)) is quanti�ed accord-

ing to Equation (9), which is quanti�ed by the number of bits to

describe the corresponding histogram of Si .

L(h(Si)) = arg min ¯h (Si)∈H̄ (Si)L(
¯h(Si)) + L(h(Si) | ¯h(Si)). (9)

�e description length L(h(Si)) consists of two parts: �e de-

scription length of the closest standard histogram L(ˆh(Si)) to the

histogram of Si and the description length depicting the di�erences

between the histogram of Si and the corresponding standard his-

togram. �e �rst part is quanti�ed by considering multiple factors

of the standard histogram, such as the number of event types in

D, boundary locations of Si , number of non-empty bins in the his-

togram, etc. �e second part is quanti�ed from the perspective of

histogram transformation in terms of bin movements [3].

4.5 Failure Prediction
Successful prediction of failures o�ers the promise of enabling sys-

tem self-con�guration and self-management.Such predictions can

help reduce system maintenance cost to avoid unplanned outages.

Even if the prediction of an error happens too late to allow proactive

action, it can prevent the spread of the error to the entire network

and can also be used as a foundation for e�ciently identifying root

causes.

FLAP supports failure prediction for log based problem diagno-

sis and determination. Speci�cally, we incorporate a simple yet

e�ective failure prediction method that is able to identify the po-

tential failures using supervised learning method [15]. In FLAP,

Figure 7: Illustration of failure prediction.
failure predication is conducted as a four-stage approach. First, the

events in logs are chunked using sliding windows. For each sliding

window, the events are further divided into several event chunks,

each of which contains the events occurred within a speci�ed time

range (e.g. 1 minute). Suppose there are n chunks, the �rst n − 1

chunks are considered as the observed chunks and the last chunk is

treated as the predict chunk (See Figure 7). �en, various groups of

features are extracted from each chunk of a given sliding window.

For example, the number of events of each severity level occurs in

each chunk, such as INFO, WARNING, ERROR, FATAL; the number

of events occurred in each chunk for each event type; the accu-

mulated number of events occurred for each event type; whether

there exists FATAL events in observed chunks. Once the features

are extracted, data normalization is then conducted to eliminate

the scale inconsistency of the features. Having prepared the data,

state-of-the-art classi�cation models such as SVM, Ridge Logistic

Regression, and Lasso are used to conduct the predictive analysis.

Finally, the majority vote principle is leveraged to aggregate the

individual models to generate the �nal prediction results.

As failure prediction is naturally an imbalanced two-class classi-

�cation problem, the positive (failure) samples are much less than

the negative samples. To address this problem, we leveraged cost-

sensitive classi�cation techniques to balance the importance of

positive and negative samples.

5 EVENT VISUALIZATION
In addition to o�er conventional visualization tools, such as event

bar chart, event cube, and 2D/3D event graph, the Event Visual-
ization Portal of FLAP provides two useful ad-hoc analysis tools:

dashboard and dynamic query form.

5.1 Dashboard

(a) Log List (b) Sca�er Plot for Di�erent Types

of Event

(c) Parallel Coordinate for the Se-

lected Dataset

(d) Parallel Coordinate for a Speci�c

Host (Sohar-PE-CORE-NE80E-1)

Figure 8: Event Data Visualization.

Dashboard is the most intuitive and fundamental way to pro-

vide an overview of the managed logs. In FLAP, the integrated

dashboard (See Figure 1(a)) illustrates several basic statistics about

the selected event log, including the number event instances, the

number of hosts that generate the events, time range of the events,

etc. Additionally, various types of charts (See Figure 8) are utilized

to provide a general overview of the events, such as the time series

re�ecting the volume of each time slot and the pie chart re�ecting

the constituent of the event types.

All the above information is integrated into a concise report that

gives the system administrators a quick summary of the selected

event log. �e knowledge in the report can be understood in a few

minutes by the administrators. It is su�cient for daily inspection if

the recorded system is in normal condition.

5.2 Dynamic�ery Form
Besides the dashboard, a more advanced data exploration module

called Dynamic�ery Form (DQF) is also provided in FLAP to enable

system administrators actively retrieve the results they need [22].

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1553

�e essence of DQF is that DQF can capture users’ interests dur-

ing the interactions and actively recommend the most relevant

query component to the users. As event analysis is an iterative

procedure, DQF is a suitable tool to ease the analysis tasks for the

administrators.

Building on top of the multi-resolution event exploration module,

DQF is able to generate the query form that satis�es the following

template:

F = SELECT A1,A2, · · · ,Ak

FROM RF WHERE σF

WITH RESOLUTION r ,

(10)

where AF = {A1,A2, · · · ,Ak } are k a�ributes for projection; RF
denotes the data source of the events; σF denotes the conjunction

of expressions for selection like the event types and the time range;

and r denotes the time resolution of the events.

6 SYSTEM EVALUATION AND CASE STUDY
�e system evaluation is conducted on two levels: the module eval-

uation and the overall system evaluation. �e module evaluation is

based on standard performance metrics used in the corresponding

research literature. �e evaluation results demonstrate the e�cacy

and e�ectiveness of the proposed system in the aspects of event

analysis, pa�ern discovery, and problem diagnosis.

6.1 Case Study

Figure 9: Log event analysis work�ow using FLAP.

Figure 9 illustrates the typical work�ow of log event analysis

using FLAP. �e system is able to obtain the event logs in both

active and passive manners. �e active manner is mainly for of-

�ine analysis. It requires the system administrators to specify the

location of the logs, typically stored in an accessible �le system.

�e system will fetch the dataset and conduct the event preprocess

and analysis. For the passive manner, the system administrators

need to set up the message passing service to periodically send log

messages to the speci�c port of FLAP. In this case, FLAP is able to

receive and conduct continuous analysis.

In the case study, we use three concrete tasks to demonstrate

how system administrators can leverage FLAP to inspect an internal

network of Huawei Technologies Co. Ltd. with event logs. For

the con�dential issue, we named the network as X. �e experi-

mental environment is shown in Table 1 and the basic statistics of

the event log is available in Table 2. Due to the scalability of the

network, only the signi�cant events such as important operations,

warnings/errors, and periodical background tasks are recorded.

Table 1: Experimental Environment

OS bits Memory CPU

Linux 2.6.32 64 32G

Intel(R) Xeon(R) CPU

E5-2430L v2 @ 2.40GHz, 6 core

Table 2: Event log dataset.

Data Source Network X

Event Types 90

Daily Signi�cant Events 299,815

Task 1: Event Summarization. It is important for system ad-

ministrator to have a global overview of the observed system before

performing the detailed system log analysis. �e event summariza-

Figure 10: Event Relationship Network Generated by Event
Summarization

tion is conducted on the dataset listed in Table 2. Figure 10 shows

the ERN(Event Relationship Network) generated by the event sum-

marization module. ERN shown in the �gure are immediately useful

for managing computer systems by system administrator. As Fig-

ure 10 shows, the events like login, logout, BFD session change, and

bfd session created successfully are triggered at higher frequency

than other events.

Task 2: Root cause mining. �e domain experts already have

the knowledge about which events are critical and can directly

result in failure (Some example of raw messages are listed in Table 3).

However, it is not obvious to identify the causes that would trigger

the occurrences of these critical events.

Table 3: Examples of critical log messages for Network X.

Type No. Example Message

16

The line protocol None on the interface
Tunnel0/0/11 has entered the DOWN state.

132

Sessions were deleted because the session
hold timer expired and the notification of
the expiry was sent to the peer.

To �nd out the possible causes, the temporal dependency pa�ern

mining module (See Figure 1(e)) is used to �nd out all the correlated

event pairs A→ B, where B is considered as the candidate critical

events. For the parameter se�ings, the time tolerance δ is set as 3

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1554

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1

C
P

U
 R

u
n

in
g

ti
m

e(
se

co
n

d
)

Number of Log (million)

Actual Data

Trend of Time Consumpation

Figure 11: E�ciency of dependency patterns Mining

seconds. Based on the domain knowledge, Table 3 lists two critical

event types (a�er event extraction) and the corresponding example

messages. Both of the events would cause immediate system failures

once they occur. Temporal pa�ern mining is leveraged to discover

all the candidate events that have strong temporal correlations with

95%+ con�dence. All the temporal pa�erns are discovered with

time lags which characterize the temporal dependency between two

events. As shown in Table 4, among all the discovered dependency

pa�erns related to the two critical events, six of them (three for

each critical event) are identi�ed by domain experts from Huawei

as the most possible causes.

In addition, as a deployed event log analysis system, system

administrator requires a higher e�ciency for responding quickly

to the system alerts and problems. In this section, to assess the

e�ciency, we evaluate t-pa�ern mining under di�erent scales of

data extracted from Huawei log database. �e empirical e�ciency

is evaluated by the CPU running time. As shown in Figure 11, each

blue dot represents one sub-dataset, and the do�ed line shows the

trend of time consumption which illustrates that FLAP achieves

nearly linear performance.

Table 4: Possible cause events discovered.

B
(Critical

Event)

A
(Root

Cause)

A →
[τ−δ,τ+δ]

B

(seconds)

Description

16

12 [1741, 1747]

Main LSP of Tunnel switches
to backup LSP in HSB.

51 [116, 122]

In the last 60 seconds, the
number of times that the trap
of mplsxcdown is suppressed.

87 [118, 124]

The interface Gigabit Ethernet
changed the baud from xxx bit
to zzz bit.

132

6 [55, 61] BFD session changed to Down.
131 [658, 664] Received GR end event.

81 [0, 6]

Received and processed interface
DOWN state.

To sum it up, dependency pa�erns can be discovered without

specifying any time window size. It is a big challenge for traditional

temporal pa�ern mining algorithm to determine the proper time

window size. A small window size would causes the pa�ern mining

algorithm to miss temporal pa�erns with large time lags, while a

large window size results in large number of false positives.

Task 3: Failure prediction. �e task of prediction is to identify

whether there is system failures in the next hour, using the event

log available for the past 1 hours. To build the predictive model,

the historic logs are segmented into multiple event sequences with

sliding windows, where each event chunk has a time range of 10

minutes. �e segmented sequences are then divided into a training

set and a validation set. For the weight cost, we set the positive

samples 100 times the weight of the negative samples. For every

30 minutes, the events will be aggregated into one event chunk

and the features will be extracted. Also, the models will be used to

quantify the probability of the failure occurrence for the future 10

minutes. For the threshold, we set it as 20% by default.

Table 5: Failure prediction results on Network X.

XXXXXXXXXPredicted

Actual

Failure No Failure

Failure 3 4

No Failure 1 85

Table 5 illustrates how FLAP predicts the future failures. We

use the log generated in the following day as the test dataset. As

shown in Table 5, FLAP is able to identify most of the failures of

the system although it generates some false positive alerts. Overall,

75% of the failures can be identi�ed ahead of time, which can sig-

ni�cantly reduce the system downtime if all the alerts are seriously

considered.

6.2 Evaluation Practice
Since its deployment, FLAP has been successfully used in many

company activities, and brought several bene�ts in increasing the

e�ectiveness of event log analysis: (1) �e event dashboard presents

a high level summary about the daily generated events of the mon-

itored system. �e system administrators are able to get a main

idea of the daily behavior of the system without delving into the

log details. Now the routine network inspection time is reduced

from one hour to a few minutes. (2) �rough event summarization

and dynamic query form, the novice system administrators can

quickly gain the insights of the monitored systems. Utilizing these

modules, they can get the high level perspective of the generated

events in terms of temporal dynamics, important event correlations,

and critical event types. �e average learning curve of the new sys-

tem administrators has been shortened. (3) Using temporal pa�ern

mining and failure prediction, system administrators e�ectively

identify the problems of the monitored network and pinpoint the

possible root causes, which reduces the downtime of the network.

7 RELATEDWORK
An increasing number of event mining techniques have been suc-

cessfully leveraged to analyze the system and optimize the man-

agement, especially in large-scale computing systems [12]. �e

data-driven techniques in system management can be broadly cate-

gorized into the following types: (1) pa�ern-based methods which

aim to discover the hidden pa�erns, unexpected trends or other

subtle relationships among events [16, 17, 19]; (2) temporal-based

methods which discover temporal characteristics (e.g., time lags,

evolving trends) and predict system behaviors [5, 23, 28]; and (3)

summarization-based methods which summarize the characteris-

tics (mainly including temporal dynamics) of the events with the

given system logs [11, 20, 24, 25].

Compared with these previous studies, the temporal dependency

pa�ern mining algorithm in FLAP is domain speci�c and meaning-

ful for system management as these pa�erns can be well visualized

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1555

and be easily interpreted. Complex temporal dependencies can be

constructed on the dependency pa�erns. In addition, an EM-based

approach is proposed to discover the maximal likelihood model of

time lags for the temporal dependencies in FLAP. Finally, the sum-

marization approach used in FLAP uses inter-arrival histograms to

capture the temporal relationships among same-type and di�erent-

type events and �nds a collection of disjoint histograms to sum-

marize the input event sequence. To the best of our knowledge,

FLAP is the �rst integrated system to facilitate the data analytics

for system event logs and support e�ective system management

comprehensively.

8 CONCLUSION
In this paper, we developed FLAP, a comprehensive system aiming

to provide the system administrators with an end-to-end solution

for event log analysis. To facilitate event analysis, several state-of-

the-art technologies in the areas of data mining, machine learning,

and information retrieval have been integrated in the system. FLAP
enables prompt data analysis and e�ective knowledge discovery in

event logs. �e initial success demonstrates that a practical data-

driven solution considering system comprehensiveness, algorithm

extensiveness, and user friendliness is able to facilitate administra-

tors to be�er understand the system status and is informative to

help increase the system availability.

ACKNOWLEDGMENTS
�e work was supported in part by the National Science Foundation

under Grant Nos. IIS-1213026, CNS-1126619, and CNS-1461926,

Chinese National Natural Science Foundation under grant 91646116,

Ministry of Education/China Mobile joint research grant under

Project No.5-10, and an FIU Dissertation Year Fellowship

REFERENCES
[1] Amazon CloudWatch. h�p://aws.amazon.com/cloudwatch/.

[2] Scribe. h�ps://github.com/facebookarchive/scribe.

[3] S.-H. Cha and S. N. Srihari. On measuring the distance between

histograms. Pa�ern Recognition, 35(6):1355–1370, 2002.

[4] O. Etzion and P. Nible�. Event processing in action. Manning

Publications Co., 2010.

[5] Z. Ge, J. Yates, L. Breslau, D. Pei, H. Yan, and D. Massey. Grca:

A generic root cause analysis platform for service quality man-

agement in large isp networks. In ACM Conference on Emerging
Networking Experiments and Technologies, 2010.

[6] P. D. Grünwald. �e minimum description length principle. MIT

press, 2007.

[7] HP. HP Operations Analytics: a New Analytics Platform to

Support the Transformation of IT. HP White Paper, 2013.

[8] IBM. Monitoring the ibm h�p server on z/os from the tivoli

enterprise portal. IBM White Paper, 2013.

[9] Y. Jiang, C. Perng, and T. Li. META: multi-resolution framework

for event summarization. In Proceedings of the 2014 SIAM
International Conference on Data Mining, pages 605–613, 2014.

[10] Y. Jiang, C.-S. Perng, and T. Li. Natural event summarization.

In Proceedings of the 20th ACM international conference on In-
formation and knowledge management, pages 765–774. ACM,

2011.

[11] J. Kiernan and E. Terzi. Constructing comprehensive sum-

maries of large event sequences. ACM Transactions on Knowl-
edge Discovery from Data (TKDD), 3(4):21, 2009.

[12] T. Li. Event Mining: Algorithms and Applications, volume 38.

CRC Press, 2015.

[13] T. Li, C. Zeng, Y. Jiang, W. Zhou, L. Tang, Z. Liu, and Y. Huang.

Data-driven Techniques in Computing System Management.

ACM Computing Surveys, 2017.

[14] T. Li and S. Ma. Mining temporal pa�erns without prede�ned

time windows. In IEEE ICDM 2004, pages 451–454, 2004.

[15] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo. Failure prediction

in ibm bluegene/l event logs. In IEEE ICDM 2007, pages 583–588,

2007.

[16] J.-G. Lou, Q. Fu, .Y. Wang, and J. Li. Mining dependency in

distributed systems through unstructured logs analysis. ACM
SIGOPS Operating Systems Review, 44(1):91–96, 2010.

[17] S. Ma and J. L. Hellerstein. Mining partially periodic event

pa�erns with unknown periods. In IEEE ICDE 2001, pages

205–214. IEEE, 2001.

[18] M. L. Massie, B. N. Chun, and D. E. Culler. �e Ganglia dis-

tributed monitoring system: design, implementation, and ex-

perience. Parallel Computing, 30(7):817–840, 2004.

[19] K. Nagaraj, C. Killian, and J. Neville. Structured comparative

analysis of systems logs to diagnose performance problems. In

Presented as part of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12), pages 353–366,

2012.

[20] S. Schneider, I. Beschastnikh, S. Chernyak, M. D. Ernst, and

Y. Brun. Synoptic: Summarizing system logs with re�nement.

In SLAML, 2010.

[21] L. Tang and T. Li. Logtree: A framework for generating system

events from raw textual logs. In IEEE ICDM 2010, pages 491–

500, 2010.

[22] L. Tang, T. Li, Y. Jiang, and Z. Chen. Dynamic query forms

for database queries. IEEE Transactions on Knowledge and Data
Engineering, 2014.

[23] L. Tang, T. Li, and L. Shwartz. Discovering lag intervals for

temporal dependencies. In ACM SIGKDD, pages 633–641, 2012.

[24] N. Ta�i and J. Vreeken. �e long and the short of it: summaris-

ing event sequences with serial episodes. In ACM SIGKDD,

pages 462–470, 2012.

[25] P. Wang, H. Wang, M. Liu, and W. Wang. An algorithmic

approach to event summarization. In ACM SIGMOD, pages

183–194, 2010.

[26] E. Wu, Y. Diao, and S. Rizvi. High-performance complex

event processing over streams. In Proceedings of the 2006 ACM
SIGMOD international conference on Management of data, pages

407–418. ACM, 2006.

[27] W. Xu, L. Huang, A. Fox, D. Pa�erson, and M. I. Jordan. De-

tecting large-scale system problems by mining console logs. In

Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, pages 117–132. ACM, 2009.

[28] C. Zeng, L. Tang, W. Zhou, T. Li, L. Shwartz, and G. Y.

Grabarnik. An Integrated framework for Mining Temporal

Logs from Fluctuating Events. IEEE Transactions on Services
Computing, 2017.

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1556

	Abstract
	1 Introduction
	1.1 Challenges and Proposed Solutions
	1.2 Roadmap

	2 FLAP Overview
	3 Log Organization
	3.1 Rule Based Event Extraction
	3.2 Learning Based Event Extraction

	4 Event Analysis
	4.1 Multi-resolution Event Exploration
	4.2 Temporal Dependency Mining
	4.3 Event Temporal Lag Mining
	4.4 Event Summarization
	4.5 Failure Prediction

	5 Event Visualization
	5.1 Dashboard
	5.2 Dynamic Query Form

	6 System Evaluation and Case Study
	6.1 Case Study
	6.2 Evaluation Practice

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

