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Abstract Due to the sharply increasing number of users andvenues inLocation-Based
Social Networks, it becomes a big challenge to provide recommendationswhichmatch
users’ preferences. Furthermore, the sparse data and skew distribution (i.e., structural
noise) also worsen the coverage and accuracy of recommendations. This problem is
prevalent in traditional recommendermethods since they assume that the collected data
truly reflect users’ preferences. To overcome the limitation of current recommenders,
it is imperative to explore an effective strategy, which can accurately provide recom-
mendations while tolerating the structural noise. However, few study concentrates on
the process of noisy data in the recommender system, even recent matrix-completion
algorithms. In this paper, we cast the location recommendation as a mathematical
matrix-completion problem and propose a robust algorithm named Linearized Breg-
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man Iteration for Matrix Completion (LBIMC), which can effectively recover the
user-location matrix considering structural noise and provide recommendations based
solely on check-in records. Our experiments are conducted by an amount of check-in
data from Foursquare, and the results demonstrate the effectiveness of LBIMC.

Keywords LBSNs · Recommender system · Check-in · Structural noise · Bregman
iteration

1 Introduction

Location recommendation has attracted a lot of research attention with the rapid devel-
opment of Location-Based Social Networks (LBSN). For instance, Foursquare, which
is the famous LBSN established in 2009, has collected more than 8 billion check-in
data and contains at least 50 million active users each month worldwide. By using
Foursquare APP (i.e., Swarm), users can post check-in records while visiting the loca-
tions, and share the experience with friends. However, the sharply increasing number
of users and locations brings a big challenge to capture users’ preferences and provide
appropriate recommendations.

Recommender systems shed some light on the solution to overcome the problem
of information overload, as they excavate valuable information to match users’ pref-
erences in such big data (Zhou et al. 2015a, b). Nonetheless, similar to classic item
recommendation platforms (e.g., Amazon and Netflix), in LBSNs, there may have
many fake check-in records created by those who intend to manipulate the popularity
of target locations (e.g., retail stores and restaurants). In this paper, we consider these
fake check-in records as the structural noise. Different from the Gaussian noise, the
structural noise often randomly emerges in some specific rows or columns without
following any distribution or showing any pattern. For example, in the user-location
matrix constructed by check-in records (Fig. 1a), the distribution of check-ins is
extremely imbalanced in Location n; Similarly, the check-in records posted by user m
are mainly at location 2. For illustration purpose, Fig. 1b presents the check-in records
of two users (i.e., user_id 36543482 and user_id 338901468) in our dataset collected
from Foursquare (detailed description of the dataset can be found in Sect. 5.1.1). As
shown in Fig. 1b, the check-in time of these users (i.e., user 36543482 at Time Square
and user 338901468 at New York Hilton Midtown) is continuous and periodic. It is
difficult to create such check-in records manually without automatic mechanisms. As
a result, these check-ins can be viewed as the simple structural noise which gener-
ates the skew distribution. Furthermore, these records account for about 90% of the
corresponding users’ check-in history and about 3–50% of all check-in records at the
corresponding locations. These data, which are defined as structural noise, may not
truly reflect users’ preference and will affect the effectiveness of recommenders.

The aforementioned simple structural noise can be easily eliminated using simple
rules such as the fixed time interval, however, the complex structural noise which does
not show any pattern is often difficult for simple filters to identify. For example, Fig. 1c
is an example of complex structural noise. It shows the check-in records of a user (i.e.,
user_id 214418658) in the top 2 locations she visited, where 132 (7.1%) records in
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Fig. 1 Structural noise. a User-location matrix with structural noise. b Examples of simple structural noise
in our dataset. c Examples of complex structural noise in our dataset

Bread and Butter and 121 (6.5%) in Red Ball Garage. The visit time of these two
locations are totally random and do not follow any distribution. In order to identify
and eliminate these kinds of structural noise, we should design complex rules or filters
based on the domain knowledge (e.g., opening hours and geographical factors).

To overcome this limitation, we propose an effective strategy named Linearized
Bregman Iteration for Matrix Completion (LBIMC), solely using the check-in data
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collected from LBSNs. In this scenario, the user-location matrix is conducted by the
number of check-in recordswhich represents the times each user has visited the specific
location (Fig. 1a), and we cast the location recommendation problem as the mathe-
matical matrix completion. The matrix completion was described as the solution of
minimizing the rank function of the matrix. However, the problem of minimizing the
rank function is considered as an NP-hard problem due to the characteristics of the
rank function (i.e., the discontinuity and non-convexity). Since the rank of a matrix is
equivalent to the L0-norm of the singular value vector of a matrix, and the L0-norm
can be smoothed into L1-norm based on the theory of compressed sensing (Donoho
2006). Thus, we employ the nuclear norm which is continuous and convex instead
of using the rank function. Currently, there are many effective approaches in com-
pressed sensing to solve such kind of matrix completion problem such as those of Cai
et al. (2010) and Chen et al. (2014). However, those approaches have not been fully
utilized in recommender system. Therefore, based on sparse check-in data with fake
records (i.e., the sparse signal with unknown noise information), we tend to recover
the user-location check-in matrix using Bregman iteration algorithm. The completed
user-locationmatrix can intuitively describe users’ latent preference even if those loca-
tions they’ve never visited. Particularly, in this case, we assume that the number (i.e.,
estimated check-in records) located in the row (i.e., user) and column (i.e., location)
demonstrates user’s preference of the specific location.

To the best of our knowledge, this is the first attempt to solve the problem of location
recommendation considering structural noise employing the theory of compressed
sensing. Our contribution can be summarized as follows:

– We transform the problem of location recommendation into the mathematical
matrix completion employing the theory of compressed sensing.

– We recover the user-location check-in matrix considering the structural noise (i.e.,
fake check-in records) and show good noise tolerance.

– We evaluate our proposed approach using the check-in data collected from
Foursquare, compare it with other state-of-the-art recommender strategies, and
demonstrate the effectiveness of LBIMC.

The rest of this paper is organized as follows: Sect. 2 describes relevant works;
several mathematical preliminaries used in the derivation process of LBIMC are pro-
vided in Sect. 3; Sect. 4 presents our proposed approach of matrix completion for
location recommendation; The experimental results are discussed and analyzed in
Sect. 5; finally, we summarize our work in Sect. 6.

2 Related work

In recent years, the popularity of smartphones accelerates the development of LBSN.
Plenty of meaningful information, such as the location information and user geo-
trajectory, can be available in LBSNs. In particular, check-in information, which is
the simple and accurate location data, can intuitively describe users’ historic visiting
records. In terms of this novel contextual data,many effective recommender algorithms
have been proposed for location recommendation.
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Context-based recommendation. Ye et al. (2011) proposed a unified POI recom-
mendation framework which takes user preference, social influence, and geographical
influence into consideration. In their work, they emphasized and proved that the geo-
graphical proximities of POIs significantly affect users’ behavior. Noulas et al. (2012)
found that the majority of people chose the locations those they have never visited in
the previous 30 days. According to this observation, they proposed a model using the
frequency visiting data based on the individual random walk over a user-venue graph.
Bao et al. (2012) presented a recommender system considering users’ visiting history
and local experts (i.e., people who have many check-in data in specific categories)
to match users’ preference when they visit a new city. Liu et al. (2013, 2015) also
developed a geographical probabilistic factor analysis framework considering various
factors such as regional popularity for POI recommendation. The proposed approach
can capture users’ mobility patterns which are imperative for POI recommendations.
In addition, the latent factor method can also model the implicit feedback recommen-
dations considering skewed check-in data. Li et al. (2015) empirically found that users’
check-in behaviors are always based on personal preference and social friend inter-
ests. According to this observation, they proposed a User Interest Probabilistic Matrix
Factorization and a Social Friend Probabilistic Matrix Factorization to model personal
preference and social friend interests, respectively. In other categories of recommen-
dations, location data (i.e., check-in) also plays crucial roles. Macedo et al. (2015)
used location data and RSVP (i.e., a kind of check-in data in Event-Based Social
Networks) for event recommendation. They considered several contextual features
such as group, content, location, and time as individual recommenders, and employed
listwise Coordinate Ascent (Metzler and Croft 2007) to rank recommendations. There
are also some novel context-based recommender systems (Baral and Li 2016; Baral
et al. 2016). However, in the context-based model, the collection of contextual data is
extremely cost-expensive or even unavailable for researchers.

Opinion spam. Besides these context-based approaches, Jindal and Liu (2008) pro-
posed the concept of opinion spam,which is the early research considering fake reviews
in the recommender system. This proposed problem attracts a lot of research attention,
and many strategies of fake review detection are presented. Lim et al. (2010) proposed
a behavioral approach detecting review spammers who game the system tomanipulate
some target products, where the model used ensemble behavior scoring approaches to
ranking candidate spammers. Mukherjee et al. (2011) proposed an effective technique
recognizing groups inwhich spammers write fake reviews in the similar pattern. In this
model, they used frequent pattern mining to discover candidate group and ranked them
in terms of spam indicator value usingRankingSVM. In their followingwork,Mukher-
jee et al. (2012) utilized several behavioral models to detect spammer groups where
the models are conducted by the collusion phenomenon among relationships between
spammers instead of calculating spam indicator value, and the approach is promising
and outperforms state-of-the-art baselines. These studies are interesting trails of rec-
ognizing noisy reviews in the recommender system, however, few studies concentrate
on skew distribution such as rating, thumbs-up, or implicit ones.

Cross-domain techniques. There are also some cross-domain techniques which
have great achievement employed in the recommender system. Cheng et al. (2012)
proposed an integrated matrix factorization framework considering the geographi-
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cal influence which is captured by Multi-center Gaussian Model (MGM) using the
probability of users’ check-in records. Luo et al. (2014) developed an NMF-based
(Non-negative Matrix Factorization) Collaborative Filtering model with a single-
element-based approach inwhich each involved feature is individually updated instead
of changing the whole feature matrices in the iterative process. Considering matrix
completion as the convex relaxation of rank minimization problem, Cai et al. (2010)
proposed an efficient algorithm to solve the nuclear norm minimization problem
integrating Bregman iteration (Goldstein and Osher 2009) and proximal forward–
backward splitting (Combettes andWajs 2005).Ma et al. (2011) proposed an algorithm
named Fixed Point Continuation with Approximate SVD (FPCA ) to approximate the
high-dimensional matrix with minimum nuclear norm based on fixed point and Breg-
man iteration. Besides these studies, many approaches of matrix completion (Melville
and Sindhwani 2011; Candes and Plan 2010; Candès and Recht 2009) have also been
presented, however, they were not employed in the practical recommender system.

3 Preliminaries

Definition 1 (Matrix norm—Meyer 2000) Suppose the rank of matrix X ∈ Rm×n is
r . The singular value decomposition is X = UΣV T in which:

U = [u1, u2, . . . , ur ] ∈ Rm×r , U T U = I,

V = [v1, v2, . . . , vr ] ∈ Rn×r , V T V = I,

Σ = diag({σi |1 ≤ i ≤ r}), σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

The nuclear norm of X is defined by:

‖X‖∗ =
r∑

i=1

|σi |

The Frobenius norm of X is defined by:

‖X‖F =
√√√√

m∑

i=1

n∑

j=1

|Xi j |2

The L2,1 norm of X is defined by:

‖X‖2,1 =
m∑

i=1

⎛

⎝
n∑

j=1

X2
i j

⎞

⎠
1/2

Definition 2 (Subdifferential and subgradient—Rockafellar 2015) Suppose Ψ (X) ∈
Rm×n is a convex function. If Z ∈ Rm×n and

Ψ (X) ≥ Ψ (X0) + 〈Z , X − X0〉 , ∀X ∈ Rm×n,
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Noise-tolerance matrix completion for location recommendation 7

then, Z is the subgradient of Ψ (X) at X = X0, and ∂Ψ (X0) represents the set of
subgradient at X = X0, while it is also the subdifferential of Ψ (X) at X = X0.

Definition 3 (Singular value thresholding operator—Cai et al. 2010) Suppose the
rank of matrix X ∈ Rm×n is r and the singular value decomposition is X = UΣV T .
If τ ≥ 0, then the corresponding singular value thresholding operator is defined by:

Dτ (X) = U Sτ (Σ)V T ,

where Sτ (Σ) = diag({max(0, σi − τ)}).
Definition 4 (Matrix space Bregman distance—Bregman 1967) Suppose J (X) :
Rm×n → R is a convex function, and X, Xi ∈ Rm×n . Then the Bregman distance
between X and Xi is defined by:

DPi

J

(
X, Xi

)
= J (X) − J

(
Xi

)
−

〈
Pi , X − Xi

〉
,

where matrix Pi ∈ Rm×n is a subgradient in subdifferential ∂ J (Xi ), and 〈·, ·〉 is the
matrix inner product.

Definition 5 (Proximal operator—Parikh and Boyd 2014) Suppose Ψ (X) ∈ Rm×n is
a convex function. For ∀V ∈ Rm×n , the proximal operator of Ψ (X) is defined by:

proxΨ (X)(V ) = argmin
X∈Rm×n

{
1

2
‖X − V ‖2F + Ψ (X)

}
.

Theorem 1 (Cai et al. 2010) If τ > 0 and X, Z ∈ Rm×n, then:

proxτ‖X‖∗(Z) = Dτ (Z).

Theorem 2 (Proximal forward–backward splitting—Combettes and Wajs 2005)
Assume F1 and F2 are lower semi-continuous convex functions in matrix space Rm×n.
If F2 is differentiable and satisfies ‖�F2(U ) − �F2(V )‖F ≤ β ‖U − V ‖F when
∃β ∈ (0,+∞), then the convex function problem:

min
X∈Rm×n

F1(X) + F2(X) (1)

has several properties described as follows:

1. If lim‖X‖F →+∞ F1(X) + F2(X) = +∞, then Eq. 1 has at least one solution;

2. If F1 + F2 is strictly convex function, then Eq. 1 has at most one solution;
3. If F1 and F2 satisfy condition 1 and 2, then Eq. 1 has only one solution.

For arbitrary initialized X0 and 0 < δ < 2/β, the unique solution can be found using
the coverage of iterative sequence Xi+1 described by:

Xi+1 = proxδF1(X)

(
Xi − δ � F2(Xi )

)
.
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Theorem 3 Assume τ > 0, X, X∗, W ∈ Rm×n, and let:

(X∗)(i) = max
{∥∥∥W (i)

∥∥∥
2

− τ, 0
}

· W (i)
∥∥W (i)

∥∥
2
, i = 1, 2, . . . , m,

then proxτ‖X‖2,1(W ) = X∗ where X (i) represents the ith row in matrix X, and
∥∥W (i)

∥∥
2

is the L2-norm of W (i).

4 Linearized Bregman iteration algorithm for matrix completion

The primary goal of LBRS is to effectively provide each user the most appropriate
recommendations considering the contextual information (e.g., check-in history and
social relations). In practice, however, due to the problemof data collection (e.g., users’
privacy preserving), contextual information is cost-expensive to collect and difficult
to integrate from different data sources. Compared with contexts, check-in data is
location-based and easily available from social networks (e.g., Twitter). Considering
these check-in records, in Location-Based Recommender System (LBRS), we assume
that there exist a set of m users U = {u1, u2, . . . , um} and a set of n locations L =
{l1, l2, . . . , ln} where the count of check-in records for users ui in locations L can be
expressed byCui = {ci1, ci2, . . . , cin}. In terms ofCui , a high-dimensional and sparse
user-location check-in matrix Rm×n can be constructed where Rm×n = {(i, j) ∈
[n] × [m] : Ri j = ci j }. If we can accurately estimate and recover all the missing
elements in the check-inmatrix Rm×n , then the completedmatrix Rm×n

C can intuitively
demonstrate the predicted satisfaction of location l j where user ui has never been.
According to the exist of fake check-ins, the observed part R p×q

o ∈ Rm×n(p ≤
m, q ≤ n) is still difficult to truly reflect users’ preference. Hence, by utilizing the
noisy matrix R p×q

o , it is a big challenge to estimate the missing elements of Rm×n .
In order to improve the effectiveness of matrix completion, we need to eliminate

the noisy information in R p×q
o . Different from other noises, in a recommender sys-

tem, the misleading information is often irregularly mixing in specific rows (users)
or columns (locations). For instance, some merchants collaborate with customers to
falsify data (e.g., reviews and check-ins) for improving their reputation. In this paper,
we consider these kinds ofmisleading information as the structural noise since they are
row-based and col-based inmatrices. Existing strategies ofmatrix completion (Candes
and Plan 2010; Recht 2011; Keshavan et al. 2009) either ignore the noise problem or
just assume that the matrix has random Gaussian noise, thus, they will hardly address
the structural noise in practical problems. To this end, we employ the regulariza-
tion of L2,1-norm to smooth these noisy information, where the objective function
minX∈Rm×n ‖X‖∗ s.t. PΩ(R) = PΩ(X) is converted into:

min
X,Z∈Rm×n

‖X‖∗ + λ ‖Z‖2,1 s.t. PΩ(R) = PΩ(X + Z), (2)

where Z is the noisy matrix, ‖Z‖2,1 represents the regularization factor of L2,1-norm
for smoothing noise, and λ is used to weigh the structural noise and the rank of matrix.
Because the matrix norm satisfies the triangle inequality and homogeneity, L2,1-norm
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Noise-tolerance matrix completion for location recommendation 9

regularization can be considered as the constrained convex optimization problem, and
Eq. 2 has a global optimal solution. However, it is still difficult to solve Eq. 2, since
neither the nuclear norm(‖X‖∗) nor L2,1(λ ‖Z‖2,1) is non-differentiable function.

To overcome this problem, Eq. 2 can be converted into the unconstrained convex
optimization as follows:

min
X,Z∈Rm×n

= J (X, Z) + H(X, Z),

s.t. J (X, Z) = μ(‖X‖∗ + λ ‖Z‖2,1)
H(X, Z) = 1

2
‖PΩ(R − X − Z)‖2F (3)

As shown in Eq. 3, it is similar to the L1-norm optimization problem (Bregman 1967)
in vector space:

Definition 6 (L1-norm optimization problem) Assume that J (u) and H(u) both are
convex functions in Rn where H(u) is differentiable and J (u) is non-differentiable.
The normal unconstrained optimization problem is described as:

min
u∈Rn

J (u) + μH(u). (4)

To effectively solve this problem, we employ the alternating minimization method
and split Bregman iteration algorithm (Goldstein and Osher 2009). The solution of
Eq. 3 is described as follows:

Algorithm 1 Alternating Linearized Split Bregman Iteration
Input:

PΩ(R): the orthogonal projection operator of observed matrix Rm×n ;
N : the number of iterations.

Output:
Xoptimal , Zoptimal .

1: Initialize Z0 = 0, P0
X = 0, P0

Z = 0;
2: for k = 0 to N do

3: Xi+1 = argmin
X∈Rm×n

μ ‖X‖∗ − μ
〈
Pi

X , X
〉
+ 1

2

∥∥∥PΩ(R − X − Zi )
∥∥∥
2

F

4: Zi+1 = argmin
Z∈Rm×n

μλ ‖Z‖2,1 − μλ
〈
Pi

Z , Z
〉
+ 1

2

∥∥∥PΩ(R − Xi+1 − Z)

∥∥∥
2

F

5: Pi+1
X = Pi

X + 1
μ PΩ(R − Xi+1 − Zi+1)

6: Pi+1
Z = Pi

Z + 1
μλ

PΩ(R − Xi+1 − Zi+1)

7: end for
8: return Xoptimal ← X N+1, Zoptimal ← Z N+1.

Since both ‖X‖∗ and ‖Z‖2,1 are non-differentiable, it is difficult to calculate Xi+1

and Zi+1 directly. Fortunately, Bregman (1967) has effectively solved Eq. 4 via defin-
ing and using Bregman divergence to represent the non-differentiable function in
vector space.With the properties (e.g., convexity and linearity) ofBregmandivergence,
the minimum of non-differentiable functions ‖X‖∗ and ‖Z‖2,1 is easily available.
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10 B. Xia et al.

Since Eq. 4 is the convex optimization problem in vector space, while Eq. 3 is in
matrix space. Inspired by Cai et al. (2010), we redefine the equation (Definition 4),
and the Bregman divergence between (X, Z) and (Xi , Zi ) in J (X, Z) is represented
by:

DPi

J (X, Z , Xi , Zi ) = J (X, Z) − J (Xi , Zi )

−
〈
μPi

X , X − Xi
〉
−

〈
μλPi

Z , Z − Zi
〉
, (5)

where Pi
X ∈ ∂

∥∥Xi
∥∥∗, Pi

Z ∈ ∂
∥∥Zi

∥∥
2,1, Pi = (Pi

X , Pi
Z ). Thus, the iterative solution

of Eq. 3 is defined as:

(Xi+1, Zi+1) = argmin
X,Z∈Rm×n

D Pi

J (X, Z , Xi , Zi + H(X, Z))

0 ∈ ∂(D Pi

J (X, Z , Xi , Zi ) + H(H, Z))|Xi+1

0 ∈ ∂(D Pi

J (X, Z , Xi , Zi ) + H(H, Z))|Zi+1

Given the definition of Bregman divergence in matrix space and Theorems 1– 3,
Xi+1 and Zi+1 in Algorithm 1 can be respectively calculated as follows:

– The solution of Xi+1:

In terms of the Property 3 of Theorem 2, we set the iteration number of proximal
forward–backward splitting (PFBS) as 1, then:

Xi+1 = proxμδ‖X‖∗−μδ
〈
Pi

X ,X
〉
(

Xi + δPΩ(R − Xi − Zi )
)

, (6)

Pi+1
X = Pi

X − 1

μδ

(
Xi+1 − Xi − δPΩ(R − Xi − Zi )

)
. (7)

Eq. 6 can be simplified as:

Xi+1 = argmin
Z∈Rm×n

μδ ‖X‖∗ + 1

2

∥∥∥X − Xi − μδPi
X − δPΩ(R − Xi − Zi )

∥∥∥
2

F
.

(8)
Due to P0

X = 0, Eq. 7 can be simplified as:

Pi+1
X = − 1

μδ
Xi+1 + 1

μ

i∑

i=0

PΩ(R − Xi − Zi ). (9)

Furthermore, assume that:

V i = δ

i∑

i=0

PΩ(R − Xi − Zi ), (10)
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Noise-tolerance matrix completion for location recommendation 11

then, obviously Eq. 10 can be rewritten as:

V i = V i−1 + δPΩ(R − Xi − Zi ). (11)

If we combine Eq. 9 with Eq. 10, then Eq. 9 is simplified into:

μδPi
X + Xi = V i−1. (12)

Combined with Eq. 11 and 12, Eq. 8 can be simplified as:

Xi+1 = argmin
X∈Rm×n

μδ ‖X‖∗ + 1

2

∥∥∥X − V i
∥∥∥
2

F
. (13)

As observed in Eq. 13, we can infer that Xi+1 is equal to Dμδ(V i ) in terms of
Theorem 1. Thus, Xi+1 can be calculated using the iteration described as follows:

{
V i = V i−1 + δPΩ(R − Xi − Zi )

Xi+1 = Dμδ(V i )

– The solution of Zi+1

Based on the solution of Xi+1, similar results of Zi+1 and Pi+1
Z can be described

as:

Zi+1 = argmin
Z∈Rm×n

μλδ ‖Z‖2,1 + 1

2

∥∥∥Z − Zi − μλδPi
Z − δPΩ(R − Xi+1 − Zi )

∥∥∥
2

F
(14)

Pi+1
Z = − 1

μλδ
Zi+1 + 1

μλ

i∑

i=0

PΩ(R − Xi+1 − Zi ) (15)

The same Eq. 10, we can also assume that:

Ui = δ

i∑

i=0

PΩ(R − Xi+1 − Zi ), (16)

Ui = Ui−1 + δPΩ(R − Xi+1 − Zi ). (17)

Combine Eq. 15 with Eqs. 15 and 16 can be simplified as:

μλδPi
Z + Zi = Ui−1. (18)

Equation 14 is updated combining Eqs. 17 and 18:

Zi+1 = argmin
Z∈Rm×n

μλδ ‖Z‖2,1 + 1

2

∥∥∥Z − Ui
∥∥∥
2

F
. (19)
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12 B. Xia et al.

In terms of Theorem 3, the analytic expression of Eq. 19 can be described as:

(Zi+1)(i) = max
〈∥∥∥(Ui )(i)

∥∥∥
2
− μλδ, 0

〉
· (Ui )(i)∥∥(Ui )(i)

∥∥
2

, i = 1, 2, . . . , m.

Thus, we can calculate Zi+1 using the iteration described as follows:

⎧
⎨

⎩
Ui = Ui−1 + δPΩ(R − Xi+1 − Zi )

(Zi+1)(i) = max
〈∥∥(Ui )(i)

∥∥
2 − μλδ, 0

〉 · (Ui )(i)

‖(Ui )(i)‖2
, i = 1, 2, . . . , m

Based on the derivation above, the unconstrained L2,1-norm regularization prob-
lem (Eq. 3) can be effectively solved via Xi+1 and Zi+1. Integrated the algorithms
mentioned above, LBIMC is described in Algorithm 2.

Algorithm 2 Linearized Bregman Iteration for Matrix Completion
Input:

PΩ(R): the orthogonal projection operator of observed matrix Rm×n ;
λ: the parameter balancing the structural noise and rank of matrix;
μ: the parameter balancing (‖X‖∗ + λ ‖Z‖2,1) and 1

2 ‖PΩ(R − X − Z)‖2F ;
δ: the convergence parameter;
N : the number of iterations.

Output:
Xoptimal , Zoptimal .

1: Initialize X0 = 0, Z0 = 0, V −1 = 0, U−1 = 0;
2: for i = 0 to N do
3: V i = V i−1 + δPΩ(R − Xi − Zi );
4: Xi+1 = Dμδ(V i );

5: Ui = Ui−1 + δPΩ(R − Xi+1 − Zi )

6: for j = 1 to m do

7: (Zi+1)( j) = (Ui )( j)
∥∥(Ui )( j)

∥∥
2

· max{
∥∥∥(Ui )( j)

∥∥∥
2

− μλδ, 0};
8: end for
9: end for
10: return Xoptimal ← X N+1, Zoptimal ← Z N+1.

As observed in Algorithm 2, in each iteration, the matrix Xi+1 can be maintained
low-rank, while Zi+1 keeps being sparse. In other words, Xi+1 can effectively retain
the preference of each user and characteristics of each location instead of changing
them, and Zi+1 would accurately match the noise generated by fake data without
perturbing other real ones. On the other hand, based on fixed point theorem (Ran
and Reurings 2004), V i and Ui keep being sparse which can save storage space.
In Algorithm 2, each iteration has the process of SVD utilized once for the sparse
matrix. However, with the increasing number of iteration and dimension of matrix,
the computation of SVD is extremely cost-expensive. To this end, Zhang et al. (2015)
proposed a low-rank stochastic proximal gradient descent (SPGD) to solve the nuclear
norm regularization problem. As described in Zhang et al. (2015), we can construct a
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low-rank stochastic gradient Ĝi = Ui V T
i of ‖X‖∗ at Xi , and calculate Xi+1 according

to:

Xi+1 = argmin
X∈Rm×n

1

2

∥∥∥X −
(

Xi − ηi Ĝi

)
‖2F + ηiγ ‖X

∥∥∥∗ , (20)

where ηi > 0 presents the step size, and γ is the regularization parameter. Com-
pared with SVD, SPGD is more effective in figuring out Xi+1 in LBIMC where the
convergence has been proved, and the time and space complexities are decreased to
O(m + n).

5 Evaluation

In this section, we evaluate the effectiveness of our proposed matrix completion
approach based on Bregman iteration for location recommendation. In Sect. 5.1, we
briefly describe the experimental setup, including the collected dataset of LBSN, com-
pared baselines, and criteria. In Sect. 5.4,we showand discuss the experimental results.

5.1 Experimental setup

5.1.1 Check-in dataset

Foursquare is a famous LBSN that allows people to post check-in records in Twitter1

when they visit a specific venue based on the location information. By using APIs
of Twitter2 and Foursquare3, we collected 419,509 tweets published by 49,823 users
among 18,899 locations from August 2012 to July 2013 in Manhattan (shown in
Fig. 2). This is the dataset utilized in our experiments to evaluate the effectiveness of
LBIMC. Figure 3 presents the categories of locations, which are the statistics of our
database. In our experiments, we describe the distribution of datasets using sparsity
levels which are associated with specific numbers to split the check-in records of users
and locations. Figure 4 depicts the distribution of check-in records at each sparsity
level for users and locations.

As observed in Fig. 4a, the majority of users belong to sparsity level 1 (i.e., people
who have only 1 record) that demonstrates the check-in data is extremely sparse.
From Fig. 4b, we can find the similar phenomenon that the minority of locations
have the majority of check-in records. Facing this sparse check-in data, traditional
methods (e.g., collaborative filtering) hardly address it very well. In order to evaluate
our proposed approach, the dataset is split into 12months and 10 partitions. For the
first partition, as shown in Fig. 5, we define the interval of training sets containing
3months from the timestamp collected the first tweet to Tc and remove the data of
locations which are first available in test interval (i.e., the fourth month). For the

1 This service has been separated from Foursquare and was integrated into Swarm APP in May, 2014.
2 https://dev.twitter.com/.
3 https://developer.foursquare.com/.
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Fig. 2 The check-in locations in Manhattan

104053, 25%

60354, 14%
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41736, 10%
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5356, 1%

Food

Shop & Service

Arts & Entertainment

Professional & Other Places

Travel & Transport

Nightlife Spot

Outdoors & Recrea�on

College & University

Residence

None

Fig. 3 The check-in popularity among different categories

following partitions, the training set is conducted by datasets (i.e., both training and
test) in the last partition, and the interval of the test set is the next month after the
training set.
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Fig. 4 The distribution of check-in records at each sparsity level for users and locations. aCheck-in records
for users. b Check-in records for locations

Fig. 5 The partition of training and test datasets

5.2 Baseline venue recommender strategies

To evaluate the effectiveness of our proposed matrix completion method, we compare
LBIMC with the following state-of-the-art recommender strategies:

– UserCF The assumption of UserCF (User-based Collaborative Filtering) is people
who have similar preferences visit similar venues. The idea of UserCF is to provide
user ui recommendations in terms of similar users u1, u2, . . . , ui−1, ui+1 . . . , um

who visit similar locations. UserCF is efficient, however, it is limited in the user
Cold-Start problem and the sharply increasing number of users and locations.

– ItemCF Different from UserCF which is based on similar users, ItemCF (Item-
based Collaborative Filtering) focuses on the similar locations. The assumption
of ItemCF is people will visit venues which have similar characteristics. ItemCF
addresses the User Cold-Start problem and improves the scalability, however, it is
limited in the location Cold-Start problem.

– MP Besides Collaborative Filtering strategies, recommending the most popular
(MP) locations is also a simple and efficient method in the location recommen-
dation. The assumption of MP is the venue is not bad if many other people have
visited. Obviously, MP still has the location Cold-Start problem.
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– NMF (Non-negative Matrix Factorization—Lin 2007) is an algorithm in linear
algebrawhere thematrix V m∗n is factorized into twomatrices W m∗k and Hi∗n with
k < min(m, n). In this paper, V m∗n represents the check-in matrix conducted by
m users and n locations in which W m∗k and Hi∗n describe m users and n locations
with k factors, respectively. The recommendation score of location j for user i can
be estimated by the product of ith row in W m∗k and jth column in Hi∗n .

– PMF (Probabilistic Matrix Factorization—Salakhutdinov and Mnih 2011) is a
probabilistic model proposed for addressing recommendation problems based
on the extremely huge, sparse, and imbalanced movie datasets (e.g., Netflix). It
assumes that people who rate similar movies are more likely to have the similar
preferences.

– BPR (Bayesian Personalized Ranking—Rendle et al. 2009) is a well-known
algorithm for providing recommendations from implicit feedbacks. A learning
approach based on SGD (stochastic gradient descent) is used to optimize themodel
considering themaximum posterior estimator of recommendation problems. Since
LBIMC is a matrix factorization based algorithm, in this paper, we learn a matrix
factorization model with BPR and compare it with our proposed method.

– ESSVM (Embedded Space ranking SVM—Xia et al. 2017) is a recently devel-
oped context-aware recommender approach which exploits location-dependent
features including geospatial data and provides personalized recommendation
using ranking SVM. This approach assumes that users’ preferences are totally
diverse according to individuals, time(i.e., workday and weekend, day and night),
and locations(i.e., distance from users’ previous check-in).

5.3 Metrics

In order to assess our proposed approach, we use well-known criteria for TopN rec-
ommendation, such as Recall, Precision, and Coverage. Assume that, U is the set of
all users, R(u) is the recommendation list based on the preference of user u in the
training dataset, and T (u) is the set of user u’s behaviors in the test dataset. Thus,
Recall and Precision can be defined as follows:

Recall =
∑

u∈U |R(u) ∩ T (u)|∑
u∈U |T (u)| , (21)

Precision =
∑

u∈U |R(u) ∩ T (u)|∑
u∈U |R(u)| . (22)

Recall and Precision can intuitively describe the effectiveness of strategies, how-
ever, another goal of a recommender system is to, as far as possible, equally recommend
all items. In this paper, we define Coverage using (1) ratio of the number of recom-
mendations to that of all locations, and (2) Gini Index based on the number of times
each location is recommended (Shani and Gunawardana 2011):

Coverage = | ∩u∈U R(u)|
|L| , (23)
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where |L| is the number of all locations in the dataset, and:

Coverage = 1

n − 1

n∑

i=1

(2 j − n − 1)p(li ), (24)

where n is the number of location in training dataset, li is the ith location in recom-
mendation list which is ordered by the number of times location l is chosen, and p(li )
is the ratio of times l are recommended to the number of users in recommender system.
Coverage is 0 when all locations are recommended in the same number of times, and
much greater than 0 when some popular location are always chosen.

5.4 Results and discussion

In this section,we aim to evaluate the effectiveness ofLBIMCand answer the following
questions:

– How effective is LBIMC for location recommendation?
– How robust is LBIMC to structural noise in check-in data?
– How robust is LBIMC to sparsity in check-in data?

5.4.1 Effectiveness

In order to assess the effectiveness of LBIMC, we compare it to four state-of-the-
art recommender strategies UserCF, ItemCF, MP, and NMF which have described in
Sect. 5.2. Figure 6 illustrates the effectiveness of seven approaches at 20 location rec-
ommendations and the box plot of each approach is conducted by every test partition,
and Fig. 7 shows the comparison between our proposed method and other baseline
approaches in the top-N recommendation.

FromFigs. 6 and 7,we can observe that LBIMCoutperforms other recommendation
algorithms in Precision including the context-based approach ESSVM. In particular,
our approach improves Precision upon the strongest baseline (NMF) by 46%, while
LBIMC enhances upon NMF by 44% in Recall. As observed in Fig. 6c, our approach
nearly recommends all locations in our dataset, and Fig. 6d demonstrates that LBIMC
also has a good performance of equally recommending each location. Notice that,
ItemCF outperforms our approach in the coverage of recommendation, however, Pre-
cision and Recall show the drawbacks of this recommender.

5.4.2 Noise-tolerance

To evaluate the noise-tolerance of LBIMC, we randomly noise the check-in data of
users and locations in training sets according to following rules: (1) if we first select
user ui , a location li j is randomly chosen to add noise; (2) if we first select location
l j , the random number of check-in records will is added to most users; (3) the noise,
in our experiments, is randomly sampled in the range which is predefined based on
the distribution of check-in data. Figure 8 illustrates the performance of baselines and
LBIMC in noise-tolerance for locations recommendation.
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(a) (b)

(c) (d)

Fig. 6 Location recommendation effectiveness. a Precision@20. b Recall@20. c Coverage_@20. d Cov-
erage_Gini@20
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Fig. 7 Performance of TopN location recommendation. a Precision@TopN. b Recall@TopN

As shown in Fig. 8, our proposed approach outperforms other baselines in terms of
Precision and Recall. Due to the effect of randomly added structural noise, the preci-
sion value of baseline methods is decreased by 34.2% on average. The performance of
UserCF, which provides recommendations based on check-in history of similar peo-
ple, is greatly impacted since, with structural noise, most users tend to have a similar
preference in specific locations. Similarly, structural noise can manipulate the popu-
larity of specific locations, thus, the performance of MP is also degraded. Although
ItemCF and NMF have better performance than UserCF and MP, the coverage val-
ues of these methods also are sharply decreased due to the structural noise. Compared
with baselines which are sensitive to noise, LBIMC shows good performance in noise-
tolerance and effectively provides recommendations where the precision value is only
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(a) (b)

(c) (d)

Fig. 8 Location recommendation noise-tolerance a Precision@20. b Recall@20. c Coverage_@20. d
Coverage_Gini@20

decreased by 15.5%. Notice that, BPR and PMF both have good performance in noise-
tolerance, however, the large decrease of Precision and Recall values show drawbacks
of these recommenders. Furthermore, the performance of ESSVM decreased signifi-
cantlywith the addition of the structural noise. This shows that the amount of check-ins
is more significant than other contexts such as distance and time and the context-aware
method ESSVM cannot handle the type of false data. In addition, to further validate
the noise-tolerance of our proposed approach, we randomly noise training sets in
multi-granularity of users and locations, and the amount of noise in terms of the aver-
age number of check-in records for each user (about 8.4 records per user). Figure 9
illustrates the noise-tolerance under different ratios of users and locations for the rec-
ommendation.

From Fig. 9, with the increasing ratio of perturbed noise, we observe that LBIMC
outperforms other baselines and maintains good performance in noise-tolerance. Fur-
thermore, traditional collaborative filter algorithms (e.g., UserCF and ItemCF) and
MP are extremely sensitive to the ratio of noisy data, particularly when the number of
recommendations is less than a number of perturbed locations. Figure 10 illustrates
the effectiveness of LIBMC in denoising the user-location check-in matrix. In Fig. 10,
blue circles represent the original check-in data where the larger radius demonstrates
the more records the user has in the specific location, while red ones are the noised
records.

As shown in Fig. 10, LIBMC removed most of the noised data from the original
check-in dataset. In statistics, LIBMC is able to filter 87.55% noised data which
outperforms NMF by 5.23%. On the other hand, as a mathematical matrix completion,
LIBMC is also robust for the order of users and locations in check-inmatrix. To validate
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(a) (b)

(c) (d)

Fig. 9 Location recommendation noise-tolerance. a Precision@20. b Recall@20. c Coverage@20.
d Coverage_Gini@20

(a) (b)

Fig. 10 Example of denoised user-location check-in matrix. a Noised check-in matrix. b check-in matrix
Denoised by LIBMC

this characteristic, LIBMC is compared with NMF and BPR which are the other
matrix algorithms in this paper using different matrices comprising of random orders
of rows (i.e., users) and columns (i.e., locations). Figure 11 shows the effectiveness
and robustness of LIBMC.
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(a) (b)

Fig. 11 Performance of LIBMCunder random orders in users and locations. a Precision@20. bRecall@20

(a)

(b)

Fig. 12 Location recommendation Sparsity. a Precision@20. b Recall@20

5.4.3 Sparsity

Another reason for the effective performance of LBIMC is that it is able to address
the problem of sparse data (i.e., Cold-Start). To further evaluate the robustness of
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our approach in sparse check-in data, we compare the effectiveness of LBIMC with
aforementioned baselines in ordered sparsity levels synchronously considering the
number of user and location. Since users who belong to level 3 or below 3 only have
5 or below 5 check-in records that are unable to validate the algorithms, we aim to
evaluate LBIMC in sparsity level 4 (i.e., more than 6 records per user) and above 4.
Figure 12 shows the performance of each approach in terms of Precision@20 and
Recall@20 for location recommendation.

As observed in Fig. 12, LBIMC has the stronger robustness to sparse check-in
data compared with other baseline recommenders. Our proposed approach is able to
provide recommendations even in the extreme case (i.e., sparsity level 4) where users
have 5–10 check-in records. On the other hand, with the increasing level of sparsity,
NMF is the only method that can compete with LBIMC while other baselines are
unable to provide effective recommendations based solely on the number of check-in
records.

6 Conclusion

In this paper, we cast the location recommendation as a mathematical matrix com-
pletion problem and propose an effective approach called LBIMC, which can recover
the user-location matrix considering structural noise. In previous works of the rec-
ommender system, researchers consider that collected data (e.g., purchase history)
truly reflect users’ preference. However, some kinds of feedback (e.g., rating, review,
and check-in) are always used by merchants to manipulate the popularity of some
target locations, since they are freely created. In order to avoid the negative effect of
structural noise, LBIMC is designed to overcome the limitations of previous recom-
menders based on compressed sensing that is used to process sparse and noisy data in
the domain of signal process. We employ several popular criteria in recommender sys-
tem to optimizeLBIMCand compare our approachwith four state-of-the-art baselines.
To the best of our knowledge, this is the first attempt to solve the problem of location
recommendation considering structural noise using the theory of compressed sensing.

In the evaluation of an amount of check-in records collected from Foursquare,
our proposed approach outperforms other methods and improves upon the strongest
baseline Non-negative Matrix Factorization by up to 46% in Precision.

There are several ideas to extend our work in the future. First, for the purpose of
personal privacy preserving, users’ preferences are often perturbed by noise such as
Laplace. Can LBIMC effectively address these noise? Second, in this paper, we only
use check-in records to construct user-location matrix ignoring much contextual infor-
mation such as group, time, and geospatial data. Can we combine these features into
user-location matrix? Third, LBIMC is an approach inspired by the research of com-
pressive sensing which cannot explain to users why the locations are recommended.
Can we combine LBIMC with other approaches that make recommendations explain-
able?
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