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Abstract. Cloud computing allows dynamic scaling of resources to
users as needed. With the increasing demand for cloud service, a chal-
lenging problem is how to minimize cloud resource provisioning costs
while meeting the user’s needs. This issue has been studied via pre-
dicting the resource demand in advance. Existing predicting approaches
formulate cloud resource provisioning as a regression problem, and aim
to achieve the minimal prediction error. However, the resource demand is
often time-variant and highly unstable, the regression-based techniques
can not achieve a good performance when the demand changes sharply.
To cope with this problem, this paper proposes a framework of pre-
dicting the sharply changed demand of cloud resource to reduce the
VM provisioning cost. In this framework, we first formulate the cloud
resource demands prediction as a classification problem and then propose
a robust prediction approach by combining Piecewise Linear Represen-
tation and Weighted Support Vector Machine techniques. Our proposed
method can capture the sharply changed points in the highly unstable
resource demand time series and improves the prediction performance
while reducing the provisioning costs. Experimental evaluation on the
IBM Smart Cloud Enterprise (SCE) trace data demonstrates the effec-
tiveness of our proposed framework.

Keywords: Cloud computing - Capacity planning - Piecewise Linear
Representation + Support Vector Machine

1 Introduction

Computing services have become an increasingly popular computing paradigm
which provide different styles of services to the cloud resource users with dif-
ferent flavors. Infrastructure as a Service (IaaS), Software as a Service (SaaS),
and Platform as a Service (PaaS) are three primary types of cloud computing
for both the applications delivered as services over the Internet and the hard-
ware/software systems in the data centers [1].
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TaaS cloud is a provision model in which an organization outsources the
equipments used to support operations, including storage, hardware, servers,
and networking components [1]. In practical application, Iaas is an elastic and
economical choice for business IT support. It enables the cloud customers to
dynamically request proper amount of virtual machines (VM) based on their
business requirements. With the growth of a gigantic number of computing and
business server demand, a key issue of IaaS is how to minimize cloud resource
provisioning costs while meeting the clients’ demands. This is the problem of
effective cloud capacity planning and instant on-demand VM provisioning.

In general, resource provisioning is challenging due to the pay-as-you-go
flexible charging style in IaaS. The amount of resources demand is rarely sta-
tic, varying as the changes of application number and time. Inefliciency of
resource provisioning leads to either over-provisioning or under-provisioning.
Over-provisioning may result in idled resources and unnecessary utility costs,
while under-provisioning often causes resource shortage and revenue loss. More-
over, initializing a new virtual machine instantly in a cloud is not possible in
practice. Therefore, to accomplish effective cloud capacity planning and instant
on-demand VM provisioning, application resource needs must be predicted in
advance so that the cloud management system can adjust resource allocations
in advance.

Capacity planning and instant on-demand VM provisioning problem can be
tackled under a unified framework, generally as both problems can be formulated
as a generic time series prediction problem [12]. In cloud capacity management,
there are two inherent characteristics: nonlinearity and time variability. The
nonlinearity implies that the relationship between the resource demand and its
affecting factors is highly nonlinear while the time variability indicates the rela-
tionship changes over time. These two characteristics pose a great challenge on
effective cloud resource demand prediction.

The existing studies treat the cloud capacity prediction as a regression prob-
lem and leverage the state-of-art time series prediction techniques to predict
the future capacity of needed resources [8,11]. The Sliding window method [6],
Auto Regression (AR) [18], and other methods based on AR such as ARCH(Auto
Regressive Conditional Heteroskedasticity) [7], ARMA (Auto Regressive Moving
Average) [17] are commonly used techniques to characterize and model observed
time series. However, these models are parametric models they only perform
well under stable conditions. Artificial Neural Network(ANN) and Support Vec-
tor Machine(SVM) regression have also been used to predict the cloud capacity
resource demand. These methods decrease the predictive costs compared with
the linear regression [9,10].

However, the existing methods can not achieve good performance on resource
demand predicting due to the following reasons: (1) The imbalanced demand dis-
tribution, dynamic changing requests, and continuous customer turnover make
the resource demand highly non-linear and time-varying. Therefore, it is dif-
ficult to predict the exact quantity of demand. (2) In practice, the predicting
costs are mainly occurred in the cases of sudden changes. However, it is difficult
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Fig. 1. The illustration of two kinds of cloud resource demand prediction. The left
panel includes four commonly used regression-based methods, from top to bottom
are Moving average, Nearest neighbour regression, Ridge regression, and SVM regres-
sion respectively. The right panel is our proposed PLR-WSVM classification technique.
The red line represents real resource demand time series, blue square points are sharply
changed demand points, and green line represents the fitting line using different regres-
sion methods (Color figure online).

for regression-based methods to capture these changes. (3) Traditional regres-
sion cost measures are all symmetric measures [5], but cloud capacity planning
is cost sensitive. The estimation for suddenly increasing or decreasing resource
demand (noted as peak points and trough points) has different consequences.

In this paper, we propose a framework to address the aforementioned chal-
lenges in effective resource provisioning. Our goal is to predict whether the
future demand is suddenly changing instead of predicting the actual quantity of
demand. First, we formulate the cloud resource demand prediction as a weighted
three-class classification problem (peak points, trough points, and stable points).
Then, we combine Piecewise Linear Representation (PLR) and Weighted SVM
to predict the suddenly changed demand. In addition, we set different weights
according to the change rate of the demand, in which the weight reflects the
relative importance of each change point.

The main contributions of this paper are describe in Fig. 1. Four commonly
used regression-based cloud resource demand prediction methods and their pre-
diction performance on a real world cloud environment are described in the left
panel of Fig. 1. Our proposed classification-based method is described in the right
panel of Fig. 1. As shown in this figure, commonly used unsupervised regression-
based method MA, Nearest Neighbour Regression, Ridge Regression, and SVM
Regression cannot capture the suddenly changed points of the resource demand
time series. However, our method can identify most of the suddenly changed
points and provide a good prediction for all three kinds of points.
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The rest of this paper is organized as follows. Section 2 analyses the char-
acteristic of cloud capacity planning problem and briefly introduces PLR and
SVM. Section 3 describes the framework of PLR-WSVM. Section 4 presents the
experimental results. Finally, Sect.5 summarizes the paper.

2 Background

To meet the practical demand and reduce the provisioning cost, this paper incor-
porates PLR and Weighted SVM(WSVM) to predict the change of future cloud
resource requirements. PLR is used to extract the peak and trough points, and
WSVM is used to model the relationship between the inflection points and the
impact factors. We choose these two methods for the following reasons: (1) PLR
is simple and the joint points between adjacent segments generated by PLR indi-
cate the change of trends [13-15]. (2) SVM has the excellent generational ability
as well as all solutions of SVM model are globally optimal [2,16].

2.1 Cloud Capacity Planning

Highly Unstable. Effective cloud capacity planning aim to prepare the
resources properly. However, unstable customer constituents and the freestyle
of resource acquisition/releasing make the cloud resource demand highly unsta-
ble. Figure2 shows the change of the overall customer number over time. As
is shown, the total number of customers is continually increasing. Therefore,
even the request behaviors of old customers keep stable, the overall request still
changes over time. Figure3 illustrates the request history of three frequently
requested customers. We can see that three time series share no common prop-
erty with each other. As a results, the distributions of the resource demands is
highly unstable.
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Fig. 2. The change of total cloud service customer over time.
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Fig. 3. Time series of resource demands of three frequently requested customers.

Cost Sensitive. Traditional regression-based prediction cost functions such as
mean average error (MAE), lease square error (LSE), and mean absolute per-
centage error (MAPE) are all symmetric measures. In cloud demand prediction,
over- and under- prediction will cause different costs, therefore, a symmetric
measure is not appropriate for model the asymmetric cost. In this paper, the
cloud resource demand prediction is considered as a multi-class classification
problem, and we incorporate the different prediction costs as the weights for the
samples of different classes. Generally, the weights of peak and trough points
should be larger than those of stable points because the predicting costs are
increasing when the demand changes suddenly.

2.2 Time Series and PLR

Time series is an ordered set of elements, the element consists of sample values
and sample time. Given a time series T = {x1,x2,...2,}, the set of segment
points is T; = (@i, Tiyy ooy T4, ), (Tiy = 1,4, = Tn,m < n), the PLR of T can
be described by

Ty = {L1(wi,, Tiy), Lo (i, Tig), ooy L1 (@i, 15 iy )} (1)

where the function L,,_1(z;,, ,,%;,, ) represents the linear fitting function at the
interval [z;,, ,,;, ] Because the PLR of time series represents a sequence by
connecting several linear functions, the value of each point in every interval can
be obtained by linear interpolation. Then, the fitting sequence is expressed as
T! = (&}, 2}, ..a}).

Most of the time series segmentation algorithms can be divided into the
following three types [13]:

— Sliding Windows: A segment is grown until it exceeds some error bound.
— Top-down: The time series is recursively partitioned until some stopping
criteria are met.
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— Bottom-up: Starting from the finest possible approximation, segments are
merged until some stopping criteria are met. There are two classical ways to

find the approximation line [13]:
e linear interpolation: The approximation line for the subsequence T'[a, b]

is simply the line connecting ¢, and t;.
e linear regression: The approximation line for the subsequence T'[a, b] is
taken to be the best fitting line in the least squares sense.

2.3 SVM

The main idea of SVM is to generate a classification hyper-plane that separates
two classes of data with the maximum margin [2,16,19]. The standard SVM
model is as follows:

!
1 2
min o | w | +CZ§Z~7

w,b,&; ‘
=1
st yi({w, ¢(xq))wi +0) > 1 =&,
&>0, i=1,2,..1, (2)

where z; € R" and y; € {—1,1} are respectively the training sample and the
corresponding class label, ¢ is a nonlinear map from the original space to a high
dimensional feature space, w is the normal vector of hyper-plane in the feature
space, b is a bias value, &; is the slack variable, (-,-) denotes the inner product
of two vectors, and C' is a penalty coefficient to balance the training accuracy
and generalization ability. The dual form of model (2) is:

ol !
1
min 3 ZZaiajyiyj@i,xj) — ;ai

i=1 i=1
l
s.t. Zyiai =0
i=1
0<o; <C, i=1,2,..1, (3)

The model (3) is an linear SVM method, and it can be easily generalized to
non-linear decision rules by replacing the inner products (z;,z;) with a kernel
function k(z;,x;). When each training sample has a weight, the standard SVM
can be extended to weighted SVM (WSVM) [4], the model (3) is transformed to

l

ol
mo%n % Z Z Q0 YY (T, ) — Z @

i=1 i=1 i=1
l
s.t. Zyiai =0
i=1
OSO&Z' gCui, 1= 1,2,...[, (4)

where p;(i =1, ...,1) represents the weight of instance x;. The decision function
for WSVM is the same as the standard SVM.
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3 The Method

As discussed earlier, a considerable amount of research has been conducted
to predict the change of cloud resource demand using regression-based tech-
nique. However, due to the characteristics of nonlinearity and time variability,
regression-base prediction can only do well in short-term demand prediction. In
addition, the predictive errors are usually high when the demand changed sud-
denly. In this paper, we formulate the cloud demand planning as a classification
problem and predict the sharply changed demand.

In this section, we describe the proposed classification-based method named
PLR-WSVM. To reduce the time-varying characteristic of resource demand, the
whole historic demand dataset is first divided into overlapping training-testing
sets. Then, PLR is used to capture the suddenly changed points to form the
training dataset, and the weights of the changed points are also assigned accord-
ing to the changing trend. Finally, WSVM is adopted to build the prediction
model.

3.1 The Data Partition

In order to reduce the time-varying feature while maintaining the order of time
in time-series data analysis, the whole dataset is often divided into overlapping
training-validation-testing sets [3,15]. Suppose the size of whole dataset is m,
and the size of each training set and testing set are mj and mqy respectively.
Then the whole dataset will be divided into p overlapping training-testing sets:

1, (5)

m—mq
p=[—7—
ma

where [2] denotes the minimal positive integer that is not less than z.

3.2 Generating the Suddenly Changed Points by PLR

After partitioning the time series dataset into overlapping training-testing sets,
PLR is used to automatically generate the suddenly changed demand points.
In this work, the top-down algorithm is selected to segment the cloud demand
time series and the linear interpolation is adopted to generate the approximation
line. The objective segmentation is to produce the best representation such that
the maximum error for any segment does not exceed the given threshold §. The
detailed process of PLR is described in Algorithm 1.

Figure 4 presents some examples of using PLR to generate possible suddenly
changed points in a period of 120 days. The first subfigure shows the original
time series while the rest of the subfigures are generated using different threshold
values in PLR. As observed in Fig. 4, the higher the threshold value, the smaller
the number of segments generated. For a threshold value of 1.0, there are roughly
65 abrupt changed points while there are only 23 abrupt changed points for a
threshold value of 8.0. Each segmentation represents a local peak or trough, and
these extremes are transformed into resource demand suddenly changed points.



A Classification-Based Demand Trend Prediction Model 449

Algorithm 1. PLR

Input:

6: the threshold to decide the point is smooth or not;
Regs: the sequence of requests;

Output:

Label: the type of each point;
: for index in Reqs (without the first and last point) do
if Regs[index] < Regs[index + 1] then
Set Labellindex] as pitprep.
else if Regs[index] == Regslindex + 1] and Regs[index] == 0 then
Set Label[index] as troughprep.

else

end if
end for

[

Set Labellindez] as peakprep.

: Connect the first and last point in Reqs with a straight line, and figure out the

point P which is farthest from the line. Record the maximum distance as D.

11: while D > § do

12:  Update the label of P in Label as trough or peak when the label of P is
troughprep Or peakprep.
13:  Connect the adjacent unstable points (including the first and last even they
are treated as stable points) with straight lines, and figure out the points
Py, Ps, ..., P, which are farthest from the lines in each segmentation. Record
the each maximum distance as D1, Do, ..

14: end while

. D,.

15: Update all troughprep and peakprep points in Label as ‘smooth’.

16: Return Label.

Original Data Threshold = 1.0
700
700
—a— Abrupt Changed Point
600 | | —e—original Point 600
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- "
& 400 § 400
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Fig. 4. The possible abrupt changed points generated by PLR
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3.3 Constructing Prediction Model by WSVM

We divide all the samples x; into three classes: peak points(demand suddenly
increased points), trough points (demand suddenly decreased points) and stable
points(demand changes a little), labeled as 1, 2 and 3, respectively. Furthermore,
cloud capacity planning is a cost sensitive problem, the weights of different class
instances should be different. According to the cost caused by the error, in model
(4), we set

pi=q 1+p8 ifyi=2 (6)

1 if yi=3

where y; is the label of z;, a = A- 3, A > 1 is a parameter to adjust the cost
between peak and trough points.

Then a three-class weighted classification problem can be constructed for
each onerlapping training-testing set:

7O = plitr) yplts) 4 — 1.9 (7)
where
listr) — {(xgi,tr)’yt(i,tr)’ugz‘,tr)) | mgi,tr) € R", (8)
g e f1,2,3), M > 1, = 1,2, may ), (9)
and

Tt = (@00 00 | g0 ¢ pr oy (09) ¢ (1 93} + = 1,2, .. my}, (10)

(2,tr)

denote the training set and testing set respectively, z; is training sample,
x§“t5) is testing sample, yt(l’tr) and yt(l’ts) are corresponding class label. ugl’m is

the weight of the training sample computed according to Eq. (6).
WSVM is used to model this three-class classification problem. The overall
framework of PLR-WSVM is illustrated in Algorithm 2.

4 Experiment Design and Evaluation

We use the real VM trace log of IBM Smart Colud Enterprise to evaluate the
effectiveness of our method. The trace data we obtained records the VM requests
for more than 4 months (from March 2011 to July 2011), and it contains tens
of thousands of request records with more than 100 different VM types. The
original trace data include 21 features such as Customer ID, VM type, Requset
Start Time, Requset End Time, and etc [12].
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Algorithm 2. PLR-WSVM

Input:

X: Cloud resource demand time series;
6,71, T2, a, B: the modeling parameters;

Output:

= e

The testing accuracy, the decision of next day’s request (the type of each point);
Normalizing the dataset X by Z; = %,
Computing p, the number of partitions é,ccofding to (5);
set i=1;
while ¢ < p do
Selecting the ith training set and testing set from X;
Generating the three-class sample points by Algorithm 1;
Setting the weights of each instance in the ith training set according to (6);
Training a three-class WSVM model from the ith training set according to (4);
Predicting the labels on ith test set.
Set i=i+1;

: end while
: Computing the test accuracy;
: Return Label;

4.1 Data Preprocessing

There are two data preprocessing steps before the raw data recorded by SCE
are used in modeling and prediction:

Feature Selection: The raw data contain some request fields that are used
during prediction and also contain some noise during temporal pattern mining.
Therefore, not all these twenty-one features of a request record are useful. In
this work, we only selected two original features, VM Type (which illustrates
the type of VM the customer requests), Company (which include the infor-
mation of the customer send the request) and four statistics features obtained
from history data as the feature subset. The details of features involved in our
experiments are described in Table 1.

Time Series Aggregation Granularity Selection: The raw trace data
are recorded per second. Aggregate these time series by different granularities
would have different levels of information and difficulty for prediction. A too
fine granularity would make the value on each timestamp lack statistical sig-
nificance, however, too large granularity would loss some useful information.
Figure 5 shows the different cloud capacity provisioning time series aggregated
by hour, day and week, respectively. We can see that the coarser the granu-
larity, the larger the provisioning amount in each time slot. Since the lifetime
of a VM is usually longer than hours, aggregate the records by hour is not
suitable in practice. On the contrary, if we aggregate the time series by week,
the cloud required to prepare the most VMs for each time slot. In this case,
the small prediction deviation will result in a large cost [12]. In order to pro-
duce the enough modeling data while maintaining the statistical significance
of raw time series, in this work, we use the daily time series in our system.
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Table 1. The description of features

Field Description

request1Part The number of request in current time period
requestAvg The average of request counts in fixed period recently
request Var The variance of request in fixed period recently
requestLast Week The number of request in the same time period last week
requestSubject The subjects of request currently (e.g., types of VM)
requestCompany The companies of request currently

requests
S
88

1 241 481 721 961 1201 1441 1681 1921 2161 2401 2641 2881 3121 3361 3601
hour

requests
e
]
83538

requests

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
week

Fig. 5. Time series aggregation granularity selection.

4.2 Experiment Results

We compare the proposed PLR-WSVM method with several commonly used
regression-based methods. The detail of methods are described in Table 2.

Regression-Based Methods vs. Real Time Series. Figure6 displays the
original capacity change time series in three different periods and the fitting
results using different regression-based methods. From top to bottom, the time
series are: (1) Time series predicted by Moving Average; (2) Time series predicted
by Nearest Neighbour regression; (3) Time series predicted by Ridge regression;
(4) Time series predicted by SVM regression. From left to right, the unstability
of three parts of time series is generally increased (i.e., from low to high).

In Fig. 6, we can see that all the regression-based methods can predict well
only when the real time series are smooth. With the increasing of unstability

Table 2. The description of methods

Method name Description

Moving Average Naive Predictor

Nearest Neighbour Regression | Linear Regression

Ridge Regression Non-linear Regression

SVM Regression Non-linear Regression with RBF kernel
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Fig. 6. Regression-based prediction results of three parts of time series.

(sharply changed demand), the fitting error is also increasing. These regression-
based methods can give a good prediction in the average sense. For those sharply
changed points, regression-based methods cannot predicting well. Among these
regression techniques, Moving Average shows a most similar changing tendency
with original time series, but its predicting curves have a time delay, limiting
its applicability in practice. Ridge Regression has the better performance than
Nearest Neighbour regression and SVM regression techniques, but it also cannot
predict the sharply changed points well in unstable time series.

PLR-WSVM vs. Regression-Based Methods. The goal of this paper is to
study a model predicting the suddenly changed points of cloud resource demand.
PLR-WSVM as a classification-based technique can give the results directly.
However, regression-based methods must do the following two steps: fitting the
original data and setting a threshold to decide whether the next demand is a
suddenly changed point or not. It is difficult to set the decision threshold because
the resource demand varying from one moment to another.

Table3 shows the performance of PLR-WSVM compared with other
regression-based methods. The experimental setup is using one week time series
to predict the demand of next day. To ensure the comparability, the predict-
ing results of regression-based methods are transformed into three classes by
comparing the relative change of resource demand with a proper threshold. The
transform rule is defined as:

1 if e(z) > 6
label(xy) = ¢ 2 if c(xe) < —0 (11)
3 if |e(zy)] < 0

where c(z;) represents change rate of resource demand between the current
regression value and the previous one, defined as

R(l’t) — R($t_1)

R(xt,l) ’ (12)

c(xy) =
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where R(z:) and R(z;—1) indicate the current and previous regression value. 6
is the threshold to transform the relative change rate into a label.

Table 3. The comparison of predicted changed point between PLR-WSVM and other
regression-based methods.

Method Threshold | Recall accuracy of Peak(%) | Recall accuracy of Trough(%)
SVMReg 0.5 7.2 4.5
1.0 0.8 0.0
RidgeReg 0.5 20.7 5.6
1.0 3.8 0.0
NNReg 0.5 11.2 7.1
1.0 2.0 0.0
MovingAverage | 0.5 0.0 0.0
1.0 0.2 0.0
PLR-WSVM - 37.42 37.91

We compared the range of threshold 6 from 0.1 to 1.5, Table3 shows the
experiment results. From this table, we can see that PLR-WSVM has the best
performance in predicting the troughs and peaks of cloud resource demand while
maintain a comparable overall accuracy. Regression-based techniques are very
sensitive to the thresholds and have poor performance in predicting suddenly
changed points.

We also compare the long term prediction performance of different methods
(e.g., using one month time series to predict resource demand of next week).
Figure 7 illustrates the prediction results. Compared with short term predicting
results, we can see that the predict performance of PLR-WSVM is increased
when the period has been extended from one day to one week. The performance
of other regression-based methods decreased greatly, especially on trough points.
The experimental results indicate that PLR-WSVM has more robust long term
prediction ability.

m Prediction of one day
m Prediction of one week

40.00% 37.91%  Prediction of one day
<00 u Prediction of one week

22.88%

0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00%

wsvm SVMReg RidgeReg NNReg  MovingAverage wsvm SVMReg RidgeReg NNReg  MovingAverage

(a) Prediction results for peaks (b) Prediction results for troughs

Fig. 7. The performance compare on different time span. The left figure is the predic-
tion results of peaks and the right figure is the prediction results of troughs.
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alpha

Fig. 8. The effect of turning o and (8 for capacity prediction.

In addition, PLR-WSVM can balance the cost among different classes of
points in cloud resource demand. According to Eq.(6), we can set different
weights to trough and peak points using @ = AB. In cloud predicting, since
the cost of under-prediction is large than over-prediction, we set A > 1.

Figure 8 shows the trough and peak points prediction with varying a and
B. We can see that the prediction accuracies of trough and peak points have
different variation trends. In practice, cloud providers can tradeoff these two
costs according the real demand to minimize the total cost.

5 Conclusion

The prediction of cloud resource demands is a very challenging task due to the
time-variant and highly unstable characteristics. Traditional regression-based
techniques cannot achieve good prediction performance, especially when resource
demand changed sharply. In this paper, we discuss the cloud capacity planning
problem from a new perspective: predicting the sharply increased and decreased
resource demand. Thus the service vendors can cope with the abrupt changed
cloud resource demand in advance and improve the quality of cloud service.

We transform the cloud capacity planning problem into a classification prob-
lem and use PLR-WSVM to predict the trough and peak points. In particular,
PLR is used to generate the training samples from the original resource demand
time series, and then WSVM is used to model the prediction of sharply changed
demand. Unlike regression-based techniques, our method formulates the cloud
resource demand into a three-class classification problem and it does not need
to determine the threshold of trough and peak points. Furthermore, WSVM can
assign the different weights for peak and trough points to minimize the total
provisioning costs.

Experimental results on the trace data of IBM Smart Cloud Enter-
prise demonstrate the effectiveness of our proposed method. Compared with
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regression-based techniques, our proposed method achieves more accurate and
robust prediction performance on suddenly changed cloud resource demand.
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