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PETs: A Stable and Accurate Predictor of
Protein-Protein Interacting Sites Based on

Extremely-Randomized Trees
Bin Xia, Hong Zhang, Qianmu Li*, and Tao Li

Abstract—Protein-protein interaction (PPI) plays crucial roles
in the performance of various biological processes. A variety of
methods are dedicated to identify whether proteins have interac-
tion residues, but it is often more crucial to recognize each amino
acid. In practical applications, the stability of a prediction model is
as important as its accuracy. However, random sampling, which is
widely used in previous prediction models, often brings large dif-
ference between each training model. In this paper, a Predictor
of protein-protein interaction sites based on Extremely-random-
ized Trees (PETs) is proposed to improve the prediction accuracy
while maintaining the prediction stability. In PETs, a cluster-based
sampling strategy is proposed to ensure the model stability: first,
the training dataset is divided into subsets using specific features;
second, the subsets are clustered using K-means; and finally the
samples are selected from each cluster. Using the proposed sam-
pling strategy, samples which have different types of significant
features could be selected independently from different clusters.
The evaluation shows that PETs is able to achieve better accuracy
while maintaining a good stability. The source code and toolkit are
available at https://github.com/BinXia/PETs.
Index Terms—ETs, PETs, sampling strategy, stability.

I. INTRODUCTION

P ROTEIN-PROTEIN interactions (PPIs) play crucial roles
in the performance of various biological processes. The

protein which is responsible for cellular mediation could be

Manuscript received February 19, 2015; revised August 20, 2015; accepted
October 06, 2015. Date of publication October 27, 2015; date of current ver-
sion January 07, 2016. The work is partially supported by the Natural Science
Foundation of China under Grant No. 61272419, the Prospective Future Net-
work Research Projects of Jiangsu Province under Grant No. BY2013095-3-02,
the Prospective Studies and Research Projects of Jiangsu Province under Grant
No. BY2013039, Grant No. BY2013037, and Grant No. BY2014089, and the
Jiangsu Key Laboratory of Image and Video Understanding for Social Safety
(Nanjing University of Science and Technology), Grant No. 30920140122007.
The work of T. Li is partially supported by U.S. National Science Foundation
under Grant DBI-0850203. Asterisk indicates corresponding author.
B. Xia and H. Zhang are with School of Computer Science and Engineering,

Nanjing University of Science and Technology, Nanjing 210094, P. R. China
(e-mail: ben.binxia@gmail.com).
*Q. Li is with School of Computer Science and Engineering, Nanjing Univer-

sity of Science and Technology, Nanjing 210094, China, and also with Jiangsu
Collaborative Innovation Center of Social Safety Science and Technology, Nan-
jing University of Science and Technology, Nanjing 210094, China (e-mail:
liqianmu@126.com).
T. Li is with School of Computing and Information Sciences, Florida Inter-

national University, Miami, FL, 33199 USA; and also with School of Computer
Science & Technology, Nanjing University of Posts and Telecommunications
(NJUPT), Nanjing 210046, China (e-mail: taoli@cs.fiu.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNB.2015.2491303

easily obtained in the sequence-based fully genomes; however,
the functionality of protein and the mediation of cellular behav-
iors are still ambiguous. PPIs are used to realize the mediation of
many cellular processes, and themediation is directly associated
with dominating almost all biochemical reactions in the living
cells [1], [2]. Therefore, in order to better understand various
cellular mediations, mechanisms of cellular processes and the
development of diseases, PPIs should be fully explored. How-
ever, the biological-experiment-based method used to search for
PPIs is often complex and time-consuming even for drosophila
melanogaster [3].
Facing such opportunities and challenges, many efficient and

effective methods of PPI site prediction have been proposed
[4]–[9]. For example, Shen et al. [10] predicted PPI networks
based on sequence information, You et al. [11] presented en-
semble extreme learning machines to predict PPIs between pro-
tein pairs, Šikić et al. [12], and Piero et al. [13] constructed a
prediction model using 3D structure information. These predic-
tion methods are excellent in recognizing an interacting region
of a protein. However, the prediction of the interacting region
is easier than the recognition of each residue of a protein. The
residue prediction problem often has imbalanced class distri-
bution because the interacting residues are much less than the
non-interacting ones.
For residue-scale interacting prediction, many predictors

such as SPPIDER [14], ISIS [15], PSIVER [16], LORIS [17]
have been proposed using different classifiers (support vector
machines (SVMs), neural networks (NNs), naive Bayes (NB),
and -regularized logistic regression ( -logreg) [18]) and
features. However, they did not deal with the imbalance clas-
sification very well as PSIVER [16], ISIS [15], and SPPIDER
[14] have a huge difference between Recall and Specificity
which will be mentioned in Section II-F. In addition, we found
that the definition of interacting residues based on complex
formation is proposed in 1997 [19], [20], and the definition of
surface using NACCESS [21] is based on the algorithm of Lee
and Richards in 1971 [22]. Gallet et al. [23] and Bock et al.
[24] also had their own definitions of PPI. There are also some
other authoritative definitions of interface residues. As a result,
a flexible and robust prediction model that is able to fit different
definitions is needed.
Besides the class imbalance problem, another problem in

residue-scale interaction predictions is the stability of random
sampling used in previous methods. Note that labels are totally
unknown in practical applications [25]. Although random sam-
pling is quite effective as the basis of most sampling strategies,
its stability can not be guaranteed since each step of random
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sampling selects an instance randomly without considering the
relationships among instances [26], [27].
In this paper, we propose a Predictor of Protein-Protein in-

teraction sites based on Extremely-randomized Trees (PETs)
where a new sampling approach based on K-means clustering
is employed. Extremely-randomized trees (ETs) is used as the
classifier using sequence-based feature position specific scoring
matrix (PSSM), protein second structure (PSS), predicted sol-
vent accessibility (PSA), and predicted relative solvent accessi-
bility (PRSA). ETs is proved as an excellent classifier in many
conditions, and it constructs an ensemble of decision trees in a
top-down manner.
The rest of this paper is organized as follows. In Section II,

we introduce our datasets and details of PETs. In Section III,
we present the experimental results. Finally, we summarize and
conclude this work in Section IV.

II. MATERIALS AND METHODS

A. Benchmark Dataset
The datasets used in this paper is divided into the training

dataset and the test dataset. Dset186 mentioned in PSIVER
[16] is used as our training dataset. Dset186, which contains
186 heterodimeric, non-transmembrane and transient protein
sequences, was extracted from Protein Data Bank (PDB) [28],
and the structures of the protein sequences in Dset186 was
solved through X-ray Crystallography with resolution less
than or equal to 3.0 Å. Dtestset72 and PDBset164 are both
used as the test datasets. Dtestset72 mentioned in PSIVER has
72 non-overlapping protein sequences [16]. For comparing
with PSIVER and LORIS, PDBset164 which is proposed in
SPRINGS is also used as a test dataset [29]. In [30], Mihel et al.
proposed Protein Structure and Interaction Analyzer (PSAIA)
which ensembles 4 kinds of meaningful interacting definition.
Each definition is accepted to redefine Dset186, Dtestset72, and
PDBset164, and their detailed descriptions are listed below.
The distribution of interacting and non-interacting residues is
displayed in Appendix A.
1) Dset-ASAChange and Dset-Murakami: This definition

mainly uses solvent accessibility (SA) of each amino acid. The
residue is marked as a surface amino acid with the relative
solvent accessibility (rSA) 5% [21], [22], and a surface
residue is considered as an interface if its lost absolute solvent
accessibility (SA) 1.0 Å [19], [20]. That is the definition
Murakami et al. [16] used. Notably, although PSAIA provides
the program to define the Dset-ASAChange, labels from Mu-
rakami et al. [16] are quite different from the labels that PSAIA
outputs in Dtestset72.
2) Dset-ANDistance: The aspect of Atom Nucleus Distance

(ANDistance) was introduced by Ofran et al. [31]. A residue is
considered as an interface if any of its atoms has the specified
distance away from the atoms of residue in the opposite chain.
The threshold of distance is always 6 Å. 4.50 Å is the criterion
used in this paper.
3) Dset-AVWRDistance: Atom Van der Waals Radii Dis-

tance(AVWRDistance) was the definition proposed by Aytuna
et al. [32]. The definition is almost the same as the ANDistance,
but only the distance is changed to Atom Van der Waals Radii
Distance. 0.5 Å is treated as the reference threshold in our work.
4) Dset-PIADA: Mihel et al. [30] proposed Protein Interac-

tion Atom Distance Algorithm (PIADA) including 4 kinds of

Fig. 1. The schematic diagram which describes the algorithm in our approach.

interaction: ionic, polar, Van der Waals, and hydrophobic. The
ionic interface is defined as the distance between ionic atoms
6 Å. The polar interface is 4.7 Å between polar atoms. Hy-

drophobic interface is marked as interaction that the distance
between any two amino acid is 4.7 Å when amino acids are
non-polar in the following: Ala, Ile, Leu,Met, Phe, Pro, Val. Van
der Waals interface is defined using the following equation:

(1)

where denotes the distance between residue i and j,
represent Van der Waals radii of residue i and j, the unit of the
equation is Å.
Notably, there is an extra residue CYS at 56th of 2J3R_A

when we run PSAIA. For the consistency with previous works,
the residue CYS is removed because it does not affect the la-
bels nearby. For the integrity of the features, the first and last
4 residues of each protein are removed (because a 9-residue
sliding windows is used in our approach, more details can be
found in Section II). If a special statement is not given, the fol-
lowing research samples are without the first and last 4 amino
acids in each protein.

B. Schematic Diagram
A schematic diagram which describes our proposed approach

is shown in Fig. 1. The approach consists of the following 3
steps: Step 1: The training set is first divided into several sub-
sets; Step 2: Extremely-randomized trees (ETs) is then trained
using samples selected from subsets clustered by K-means; and
Step 3: ETs will output labels of residues in the test set.

C. Features Extraction and Sequence Representation
In proteomics, the protein is diverse and mysterious. There-

fore, the extraction of features is difficult. Based on previous
experiments [33], [34], the following features are used:
Feature I: Position Specific Scoring Matrix (PSSM). PSSM

includes the considerable evolutionary information of pro-
teins although its generation is quite time-consuming using
PSI-BLAST [35]. In order to compare with previous works,
in this paper, BLAST+ is used with the same options (psiblast
query protein num_iterations 3 db nr inclusion_ethresh 0.001
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Fig. 2. The detail of dataset segmentation. The distribution of figure is the original definition of Dset186. The dark gray means the positive samples, the other color
represents the negative ones. The pie on the left is the raw training dataset, which is displaying the distribution of Dset186, 3 pies in layer 1 (on the middle) are the
segmentation of Dset186 based on classes ( -helix (H), -sheet (E) and random coil (C)) of Protein Secondary Structure (PSS). The bars means the segmentation
of each dataset in layer 1 based on classes (buried (B), intermediate (I), and exposed (E)) of Predicted Solvent Accessibility(PSA).

out_ascii_pssm pssm) in the research of K. Dhole et al. against
the NCBI non-redundant protein sequence database [17], [36].
BLAST+ is available at ftp://ftp.ncbi.nlm.nih.gov/blast/ex-
ecutables/blast+/, and NCBI non-redundant protein se-
quence database and its blast database are available at
ftp://ftp.ncbi.nlm.nih.gov/blast/db/. Many previous experi-
ments demonstrated that a nine-residue sliding window was
the best choice in the research of protein-protein interacting
prediction [12], [14]–[17]. In this paper, a nine-residue sliding
window is also used to extract features from PSSM (the number
of features: ), and the feature scores are not
normalized. PSSM can be used as the standard to normalize
other features. The first and last 4 residues of every protein
sequence, which lack the information in a nine-residue sliding
window, are not involved in our research.
Feature II: Protein Secondary Structure (PSS). PSS is the

conformation of repetition in polypeptide chains with rules,
and the common PSS has 3 types of construction: -helix (H),
-sheet (E), and random coil (C). In the previous research

of targeting protein-ligand binding sites prediction, PSS had
played a very crucial role [37]. In this paper, PSS is extracted as
a nine-residue-sliding-window feature (the number of feature:
9). SSpro, which is based on the sequence homology and the
secondary structure of homologous protein, is employed to
predict PSS. PSS is normalized using the ranges of PSSM, and
the variable “pss2fea” is set to be the results in our python
program ` ' ` ' ` ' - [38]. SSpro is
available at http://scratch.proteomics.ics.uci.edu/.
Feature III: Predicted Solvent Accessibility (PSA). PSA

information is predicted using SANN, which gives a

Fig. 3. The confusion matrix and relevant evaluation index. True Positive (TP):
The number of residues classified as interacting correctly, False Positive (FP):
The number of residues classified as interacting correctly incorrectly, False Neg-
ative (FN): The number of residues classified as non-interacting incorrectly,
True Negative (TN): The number of residues classified as non-interacting cor-
rectly.

three-state classification of solvent accessibility including
buried (B), intermediate (I), and exposed (E). SANN is avail-
able at http://lee.kias.re.kr/newton/sann/ [39]. A variable
“psa2fea” is also set to be the results in our python program
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TABLE I
THE PERFORMANCE OF EACH FEATURE ON DSET186 USING LOOCV

TABLE II
THE PERFORMANCE (AVERAGE) OF WHOLE FEATURES USING LOOCV

` ' ` ' ` ' - , and PSS is extracted as
a nine-residue-sliding-window feature (the number of feature:
9). Notably, 1n2c_ABCD with 2000 residues is removed from
our dataset, because SANN only accepts the protein with
residues less than 1000, and it does not have an off-line version.
Feature IV: Predicted Relative Solvent Accessibility (PRSA).

PRSA, in this paper, is not same as PRSA LORIS used in [17].
Here PRSA is extracted using ACCpro20, which predicts the
RSA using thresholds from 0% to 95% with 5% a step. This
feature is first enlarged 20 times, then subtracted by 10 to have
a range of . PRSA is also extracted as a nine-residue-
sliding-window feature (the number of feature: 9), and is avail-
able at same web service as PSS [38].

Fig. 4. The weight of PSSM based on a 9-residue sliding window in ETs. Top
20 are displayed in dark gray, and light gray shows other features in top 50 of
PSSM.

D. Sampling Strategy

The extreme imbalance between the interacting and non-inter-
acting residues, makes the choice of representative samples to
be a big challenge. Hu et al. [40] proposed a supervision-based
over-sampling algorithm, which utilizes the majority class in-
formation to guide the up-sample of minority class. However,
the up-sampling method is computationally expensive, and has
a risk of over fitting. For down-sampling, themost simple and ef-
fective heuristic method is random sampling. However, random
sampling lacks the stability. In this paper, a new down-sampling
strategy is proposed. The approach consists of the following 4
steps: Step1, a tree is constructedusing the raw trainingdataset as
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Fig. 5. The same “Ratio” and “Interval” are accepted in 2, 6, 10, and 14
“Cluster,” the rangers of “Ratio” and “Interval” are [81, 100](%) and [1, 8]
respectively with the step 1(%). The Dset186 is divided into 6 parts with 31
proteins respectively. The data above are the average of 6-fold cross validation.
(a) MCC in 2 clusters, (b) MCC in 6 clusters, (c) MCC in 10 clusters, (d) MCC
in 14 clusters.

the root; Step 2, the tree is grown using selected features; Step 3,
the subsets in the leaves are clustered by K-means; Step 4, all the

samples are sorted based on their distances to the corresponding
cluster centers, and the training samples are then selected at a
fixed interval (For example, given 100 points, 1st, 4th, 7th, 10th,

, 97th, 100th point will be selected at a 3-interval where the
points are sorted based on their closeness to the corresponding
cluster centers). Note that only the negative samples are selected
using the proposed sampling strategy (or samples in themajority
class of a binary classification problem). All the positive sam-
ples (or samples in the minority class) will be included. The
details of our proposed approach is shown in Algorithm 1.

Algorithm 1 PETs sampling algorithm

Input:

: the raw dataset with feature vectors;

: the number of cluster;

: the ratio of sample considering from each center
of cluster;

: the interval between each sampling;

: the list of features used for dividing
raw dataset;

Output:

: the set of final training data
1:
2: for in do
3: if then
4: appends divided
5: else
6:
7:
8: for in do
9: appends

divided
10: end for
11: end if
12: end for
13: for in do
14: for in do
15: del
16: end for
17: -
18:

19:
20: for in do
21: if not then
22:
23: end if
24: appends
25: end for
26: for in keys() do
27:

28:
29: for in xrange( *len ) do
30: if then
31:
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32: appends

33: else
34:
35: end if
36: end for
37: end for
38: end for
39: return

The aforementioned sampling strategy is a type of cluster
sampling (or stratified sampling) where the clusters are obtained
using K-means clustering. In particular, PSS and PSA, which
have low-dimensional labels, are first used to segment the raw
training dataset and K-means clustering, is then applied on the
subsets. The idea of feature-based segmentation was motivated
from the work in Folkman et al. [41]. However, in our work,
we do not use the subsets to construct multiple models. The de-
tail of feature-based segmentation is shown in Fig. 2. The nega-
tive samples are selected under each pattern (a pattern means a
residue with a combination of PSS and PSA, e.g., PSS is -helix
while PSA is exposed or PSA is “intermediate”). From Fig. 2,
we observe that the data distribution in layer 2 (in the middle)
are quite similar; however, in layer 3 (on the right), the distribu-
tions of positive samples are different. This shows that the data
segmentation is effective.

E. Extremely Randomized Trees

Extremely randomized trees (ETs) is a tree-based ensemble
methods. ETs constructs an ensemble of unpruned decision or
regression trees in a top-down manner. Different from Random
Forests (RFs) [42], [43], the two primary innovations of ETs
are: 1) the cut-points are selected randomly to divide nodes; 2)
the decision trees are constructed by the whole training dataset
rather than the replica generating via Bootstrap [44]. In this
paper, we employs scikit-learn (a machine learning package in
python) to implement ETs. Scikit-learn supports simple and ef-
ficient tools for data mining and data analysis, and is available
at http://scikit-learn.org/stable/index.html [45].

F. Evaluation Criteria

The accuracy alone is not sufficient to evaluate a predictor.
For the objectivity and effectiveness of evaluation, the con-

Fig. 6. The performance of our sampling strategy in different clusters.

cepts of confusion matrix and Receiver Operating Character-
istics (ROC curve is drawn using the confusion matrix and the
Area Under an ROC Curve (AUC)) are used to compare our
method with other alternative algorithms. The confusion matrix
and relevant evaluation index are illustrated in Fig. 3 [46].
True Positive Rate (TPR, Sensitivity, Recall), True Nega-

tive Rate (TNR, Specificity), Positive Predictive Value (PPV,
Precision), Accuracy (ACC), Matthews Correlation Coefficient
(MCC), and F-measure, are then defined as follows. Among
these criteria, MCC, which is a correlation coefficient between
the observed and predicted binary classifications, is themost im-
portant criterion in protein-protein interaction predictions. (See
equations at the bottom of the page.)
The stability of a sampling strategy is also an evaluation ob-

jective in this paper. The most simple and effective method to
measure the fluctuation is calculating the variance of each cri-
teria above. The variance of a discrete random variable is cal-
culated below:

(8)

where means the average of random variable of a set .

(2)

(3)

(4)

(5)

(6)

- (7)
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TABLE III
THE PERFORMANCE OF SAMPLING METHODS IN DTESTSET72 AND PDBTESTSET164

III. RESULTS AND DISCUSSION

A. Validation of Features

Four sequence-based protein features are used in our ap-
proach: Position Specific Scoring Matrix (PSSM), Protein
Second Structure (PSS), Predicted Solvent Accessibility (PSA),
and Predicted Relative Solvent Accessibility (PRSA). Our
sampling strategy is feature-based, which means our sampling
method could not work without PSS and PSA. So the random
sampling, which maintains an equal distribution of positive and
negative in each protein, will be used to validate the features
in Section [17]. Leave-One-Out Cross Validation (LOOCV) is
used to assess the performance of each feature under Dset186
with the definition of Murakami et al. [16]. ETs is used as
the classifier. Table I presents the evaluation results of each
combination.
Each protein in Dset186 is left out, and 186 trials are run

in each LOOCV. To compare with LORIS, the results in
Table I are obtained by averaging 3 trials. The average of
cumulative hydropathy (ACH) used in LORIS does not have
the good performance in our prediction model, so ACH is
removed [17], [47]. In general, the performance measure
becomes better with a good balance between Recall and
Specificity when a new feature is added or a wider sliding
window is used. We found an interesting phenomenon here:
F-measures in the first line are not equal to the equation

, besides
LORIS. That is because, the results in the first lines are calcu-
lated using the average, those in the second lines are calculated
using the cumulative confusion matrix. They have similar
trends, but with different values. The special LOOCV is used
here for verifying the features, and every round of LOOCV
leaves out different proteins with different lengths. Each round
will lose some information, however, the cumulative confusion
matrix could retain much information in each round of training
and testing. To compare with LORIS, the results of two calcu-
lating methods are displayed. Here, we also replace features
used in LORIS with our features and we achieve better results
than LORIS.

Table II shows the performance of LORIS's and our features
in Dset186 and PDBtestset164 using ETs and -logreg, which
are the classifiers of PETs and LORIS.
Fig. 4 shows the weight of each feature in PSSM. “Top”

means the best in PSSM, not in all features. In fact, PRSA and
PSA are more effective in our model.

B. Performance of Sampling Strategy
In this paper, a new sampling method is proposed to improve

the stability and accuracy. The proposed sampling needs 3 input
parameters: Ratio, Interval, and Cluster. “Ratio” is the propor-
tion of negative samples, “Interval” is a fixed interval of se-
lecting a sample from the sorted list, and “Cluster” represents
the number of clusters when using K-means. MCC is used as
the main evaluation criterion along with the balance between
Recall and Specificity. Fig. 5 shows the relationship between
“Ratio” and “Interval.”
Obviously, MCC reaches the peak when is more than

90% and is in [3, 4]. However, it is the optimal MCC
without considering the balance between Recall and Specificity.
A suitable balance ( % and %)
can be found when % and . Once “Ratio”
and the “Interval” are determined, then the optimal number
of cluster can be selected using them. The trend of

is displayed in Fig. 6.
The scatter-plot displays the actual variation of MCC across

different clusters. From Fig. 6, we can find that, MCC reaches
the peak at , which has a suitable balance between
Recall and Specificity.
We compare our sampling method with two other alternative

strategies: 1) Strategy I: For this strategy, all amino acids in each
protein are gathered in a set, and negative samples are then se-
lected based on the number of positive residues where the ratios
of 1:1 and 1:1.1 (positive : negative) will be used. 2) Strategy II:
This strategy is used by Dhole et al. [17], which maintains the
ratio of 1:1 between positive and negative residues and keeps
this balance in each protein. In particular, if the positive amino
acids are more than the negative ones in a protein, the positive
samples will be selected based on the number of the negative
residues. Table III shows the results about the comparison. The
first line represents the value of each criterion and the ones in
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TABLE IV
THE PERFORMANCE OF PETS AND LORIS ON DIFFERENT DTESTSET72

TABLE V
THE PERFORMANCE OF PETS AND LORIS ON DIFFERENT PDBTESTSET164

brackets represent the variance. Each strategy is run 100 times
for evaluating the stability.

All three random sampling methods have a good balance
between Recall and Specificity. Although our proposed sam-
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pling strategy has similar accuracy values with other baseline
methods, it is more stable.

C. Comparison of Stability in Datasets of Different Definitions
The datasets are redefined using the programMihel et al. pro-

vided [30]. More details can be found in Appendix A.
For comparison, we implemented LORIS [17]. In particular,

PSSM and ACH are normalized using the sigmoid function and
PRSA is extracted from SANN. The scores next to labels (E, B,
I) in SANN's reports are used as the features in our reproduction.
Tables IV and V present the results on the datasets with dif-

ferent definitions. The performance measure is displayed on the
first line and the second line is the variance. The results are cal-
culated based on the cumulative confusionmatrix with 100 runs.
Dhole et al. also evaluated their predictor on PDBtestset164;

however, they used the model which was trained by original
Dset186 to test on PDBtestset164 (labeled by PIADA). Al-
though Dset-ASAChange and Dset-Murakami used the same
method to label the dataset, in fact, 0.24% of their labels are
different.
Notably, LORIS has similar variance with PETs. Generally,

the more simple the model is, the more stable (i.e., with less
variance) it would be [44], [48], [49]. LORIS uses -logreg
[18] as the classifier while PETs uses ETs. Table IV also shows
the variance of PETs using -logreg [18]. There is little differ-
ence between the variances of PETs and LORIS.

D. Performance on Different Types of Proteins
Dset186, Dtestset72, and PDBtestset164 contain a variety

of proteins, which are different in amino acid compositions,
sequence length, physicochemical properties, and so on.
Fig. 7 shows the performance of PETs with different sequence
lengths. In Fig. 7, each point indicates a protein in Dtestset72
or PDBtestset164. The X-axis shows the length of protein
sequence, and the Y-axis presents the MCC, which is evaluated
using PETs to predict the interacting amino acids in this protein.
From Fig. 7, we can find that, PETs has good performance

in proteins with different sequence lengths, especially in those
short proteins. Since long proteins are rare in nature, a few long
proteins are available in our experiment. Table VI shows the
performance of PETs with different amino acids.

IV. CONCLUSION
Identifying the regions of interaction in proteins is difficult,

and classifying each residue is even more challenging. Espe-
cially in practical applications, the stability and accuracy of
classification are equally important. In this paper, we proposed
PETs (Predictor of Protein-Protein interaction sites based on
Extremely-randomized Trees) to improve the accuracy while
maintaining the stability. A new sampling strategy is proposed
to solve this particular problem: a) the raw training dataset is
divided into several subsets, and b) the samples of the training
dataset are selected from each cluster of subsets using K-means.
The source code and toolkit are available at https://github.com/
BinXia/PETs.
There are some research questions. First, the residues, which

are the first and last 4 residues of a protein, have a higher propor-
tion of interaction than those in the whole sequence of proteins.
Can a special model be constructed to fit these edge residues?
Second, can the effective feature be extracted to better identify

Fig. 7. The performance of each protein in Dtestset72 and PDBtestset164
under different definitions. (a) Dset-Murakami, (b) Dset-ASAChange, (c)
Dset-ANDistance, (d) Dset-AVWRDistance, (e) Dset-PIADA.

the interacting residues? Finally, can some sampling strategies
be applied to the residue-scale PPI classification?
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TABLE VI
THE PERFORMANCE OF PETS IN DIFFERENT AMINO ACID

TABLE VII
THE INTERFACE DISTRIBUTION OF DSET-MURAKAMI

TABLE VIII
THE INTERFACE DISTRIBUTION OF DSET-ASACHANGE

APPENDIX A
THE DETAIL OF DATASETS

In this section, we present the details of each dataset. Ta-
bles VII, VIII, IX, X, and XI show the detailed interface
distribution of Dset-ASAChange, Dset-Murakami, Dset-AN-
Distance, Dset-AVWRDistance, and Dset-PIADA respectively.
Notably, “total” means the proteins with first and last 4 residues
while “valid” is without those residues.
Tables XII, XIII, and XIV present the repetition ratio between

different definitions of datasets. MK, ASAC, AND, AVWRD,
and PIADA are abbreviations of Murakami, ASAChange, AN-
Distance, AVWRDistance, and PIADA, respectively.

TABLE IX
THE INTERFACE DISTRIBUTION OF DSET-ANDISTANCE

TABLE X
THE INTERFACE DISTRIBUTION OF DSET-AVWRDISTANCE

TABLE XI
THE INTERFACE DISTRIBUTION OF DSET-PIADA

TABLE XII
THE REPETITION RATIO OF DSET186 BETWEEN DIFFERENT DEFINITIONS

TABLE XIII
THE REPETITION RATIO OF DTESTSET72 BETWEEN DIFFERENT DEFINITIONS

Notably, the residues of PDBtestset164 in Dset-PIADA is dif-
ferent with others. PIADA removed 79 residues (0.23%) with
uncertain label in some proteins, since not enough informa-
tion can be provided by PIADA. For comparison with different
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TABLE XIV
THE REPETITION RATIO OF PDBTESTSET164 BETWEEN DIFFERENT

DEFINITIONS

definitions, the residues, which PIADA removed, would be re-
moved from other definitions.
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